WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,after,from,s} and constructors {0,cons,n__from ,n__s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) after#(0(),XS) -> c_4() after#(s(N),cons(X,XS)) -> c_5(after#(N,activate(XS)),activate#(XS)) from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_8() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) after#(0(),XS) -> c_4() after#(s(N),cons(X,XS)) -> c_5(after#(N,activate(XS)),activate#(XS)) from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_8() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/2 ,c_3/2,c_4/0,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5,6,7,8} by application of Pre({1,4,5,6,7,8}) = {2,3}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) 3: activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) 4: after#(0(),XS) -> c_4() 5: after#(s(N),cons(X,XS)) -> c_5(after#(N,activate(XS)),activate#(XS)) 6: from#(X) -> c_6() 7: from#(X) -> c_7() 8: s#(X) -> c_8() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) - Weak DPs: activate#(X) -> c_1() after#(0(),XS) -> c_4() after#(s(N),cons(X,XS)) -> c_5(after#(N,activate(XS)),activate#(XS)) from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_8() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/2 ,c_3/2,c_4/0,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_1 from#(X) -> c_7():7 -->_1 from#(X) -> c_6():6 -->_2 activate#(X) -> c_1():3 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 2:S:activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) -->_1 s#(X) -> c_8():8 -->_2 activate#(X) -> c_1():3 -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 3:W:activate#(X) -> c_1() 4:W:after#(0(),XS) -> c_4() 5:W:after#(s(N),cons(X,XS)) -> c_5(after#(N,activate(XS)),activate#(XS)) 6:W:from#(X) -> c_6() 7:W:from#(X) -> c_7() 8:W:s#(X) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: after#(s(N),cons(X,XS)) -> c_5(after#(N,activate(XS)),activate#(XS)) 4: after#(0(),XS) -> c_4() 6: from#(X) -> c_6() 7: from#(X) -> c_7() 3: activate#(X) -> c_1() 8: s#(X) -> c_8() * Step 4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/2 ,c_3/2,c_4/0,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 2:S:activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) * Step 5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) * Step 6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [0] p(after) = [0] p(cons) = [1] x1 + [1] x2 + [0] p(from) = [0] p(n__from) = [1] x1 + [8] p(n__s) = [1] x1 + [10] p(s) = [0] p(activate#) = [2] x1 + [10] p(after#) = [8] x2 + [2] p(from#) = [1] p(s#) = [2] x1 + [4] p(c_1) = [4] p(c_2) = [1] x1 + [10] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: activate#(n__from(X)) = [2] X + [26] > [2] X + [20] = c_2(activate#(X)) activate#(n__s(X)) = [2] X + [30] > [2] X + [10] = c_3(activate#(X)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))