WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,after,from} and constructors {0,cons,n__from,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) from#(X) -> c_5() from#(X) -> c_6() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) from#(X) -> c_5() from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/2 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5,6} by application of Pre({1,3,5,6}) = {2,4}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__from(X)) -> c_2(from#(X)) 3: after#(0(),XS) -> c_3() 4: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) 5: from#(X) -> c_5() 6: from#(X) -> c_6() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(X)) after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) - Weak DPs: activate#(X) -> c_1() after#(0(),XS) -> c_3() from#(X) -> c_5() from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/2 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: activate#(n__from(X)) -> c_2(from#(X)) 2: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) 3: activate#(X) -> c_1() 4: after#(0(),XS) -> c_3() 5: from#(X) -> c_5() 6: from#(X) -> c_6() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) - Weak DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() from#(X) -> c_5() from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/2 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) -->_2 activate#(n__from(X)) -> c_2(from#(X)):3 -->_1 after#(0(),XS) -> c_3():4 -->_2 activate#(X) -> c_1():2 -->_1 after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)):1 2:W:activate#(X) -> c_1() 3:W:activate#(n__from(X)) -> c_2(from#(X)) -->_1 from#(X) -> c_6():6 -->_1 from#(X) -> c_5():5 4:W:after#(0(),XS) -> c_3() 5:W:from#(X) -> c_5() 6:W:from#(X) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: activate#(X) -> c_1() 4: after#(0(),XS) -> c_3() 3: activate#(n__from(X)) -> c_2(from#(X)) 5: from#(X) -> c_5() 6: from#(X) -> c_6() * Step 5: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/2 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)) -->_1 after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS)),activate#(XS)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) * Step 6: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) * Step 7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(after#) = {2}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(activate) = [1] x1 + [8] p(after) = [4] x2 + [2] p(cons) = [1] x2 + [2] p(from) = [6] p(n__from) = [0] p(s) = [1] x1 + [8] p(activate#) = [1] x1 + [2] p(after#) = [3] x1 + [1] x2 + [0] p(from#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [1] x1 + [0] p(c_5) = [2] p(c_6) = [1] Following rules are strictly oriented: after#(s(N),cons(X,XS)) = [3] N + [1] XS + [26] > [3] N + [1] XS + [8] = c_4(after#(N,activate(XS))) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [8] >= [1] X + [0] = X activate(n__from(X)) = [8] >= [6] = from(X) from(X) = [6] >= [2] = cons(X,n__from(s(X))) from(X) = [6] >= [0] = n__from(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))