WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1))) 2nd(cons1(X,cons(Y,Z))) -> Y activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2nd/1,activate/1,from/1,s/1} / {cons/2,cons1/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {2nd,activate,from,s} and constructors {cons,cons1,n__from ,n__s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) 2nd#(cons1(X,cons(Y,Z))) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_8() Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) 2nd#(cons1(X,cons(Y,Z))) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_8() - Weak TRS: 2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1))) 2nd(cons1(X,cons(Y,Z))) -> Y activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/2,c_2/0 ,c_3/0,c_4/2,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,3,6,7,8} by application of Pre({2,3,6,7,8}) = {1,4,5}. Here rules are labelled as follows: 1: 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) 2: 2nd#(cons1(X,cons(Y,Z))) -> c_2() 3: activate#(X) -> c_3() 4: activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) 5: activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) 6: from#(X) -> c_6() 7: from#(X) -> c_7() 8: s#(X) -> c_8() * Step 3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) - Weak DPs: 2nd#(cons1(X,cons(Y,Z))) -> c_2() activate#(X) -> c_3() from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_8() - Weak TRS: 2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1))) 2nd(cons1(X,cons(Y,Z))) -> Y activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/2,c_2/0 ,c_3/0,c_4/2,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):3 -->_2 activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)):2 -->_2 activate#(X) -> c_3():5 -->_1 2nd#(cons1(X,cons(Y,Z))) -> c_2():4 2:S:activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):3 -->_1 from#(X) -> c_7():7 -->_1 from#(X) -> c_6():6 -->_2 activate#(X) -> c_3():5 -->_2 activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)):2 3:S:activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) -->_1 s#(X) -> c_8():8 -->_2 activate#(X) -> c_3():5 -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):3 -->_2 activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)):2 4:W:2nd#(cons1(X,cons(Y,Z))) -> c_2() 5:W:activate#(X) -> c_3() 6:W:from#(X) -> c_6() 7:W:from#(X) -> c_7() 8:W:s#(X) -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: 2nd#(cons1(X,cons(Y,Z))) -> c_2() 6: from#(X) -> c_6() 7: from#(X) -> c_7() 5: activate#(X) -> c_3() 8: s#(X) -> c_8() * Step 4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) - Weak TRS: 2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1))) 2nd(cons1(X,cons(Y,Z))) -> Y activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/2,c_2/0 ,c_3/0,c_4/2,c_5/2,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))),activate#(X1)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):3 -->_2 activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)):2 2:S:activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):3 -->_2 activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)):2 3:S:activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):3 -->_2 activate#(n__from(X)) -> c_4(from#(activate(X)),activate#(X)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: 2nd#(cons(X,X1)) -> c_1(activate#(X1)) activate#(n__from(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) * Step 5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2nd#(cons(X,X1)) -> c_1(activate#(X1)) activate#(n__from(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak TRS: 2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1))) 2nd(cons1(X,cons(Y,Z))) -> Y activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/1,c_2/0 ,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: 2nd#(cons(X,X1)) -> c_1(activate#(X1)) activate#(n__from(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) * Step 6: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2nd#(cons(X,X1)) -> c_1(activate#(X1)) activate#(n__from(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/1,c_2/0 ,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:2nd#(cons(X,X1)) -> c_1(activate#(X1)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):3 -->_1 activate#(n__from(X)) -> c_4(activate#(X)):2 2:S:activate#(n__from(X)) -> c_4(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):3 -->_1 activate#(n__from(X)) -> c_4(activate#(X)):2 3:S:activate#(n__s(X)) -> c_5(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):3 -->_1 activate#(n__from(X)) -> c_4(activate#(X)):2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(1,2nd#(cons(X,X1)) -> c_1(activate#(X1)))] * Step 7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/1,c_2/0 ,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(2nd) = [0] p(activate) = [0] p(cons) = [1] x1 + [1] x2 + [0] p(cons1) = [1] x1 + [1] x2 + [0] p(from) = [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [1] p(s) = [0] p(2nd#) = [0] p(activate#) = [2] x1 + [7] p(from#) = [0] p(s#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [1] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: activate#(n__s(X)) = [2] X + [9] > [2] X + [8] = c_5(activate#(X)) Following rules are (at-least) weakly oriented: activate#(n__from(X)) = [2] X + [7] >= [2] X + [7] = c_4(activate#(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_4(activate#(X)) - Weak DPs: activate#(n__s(X)) -> c_5(activate#(X)) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/1,c_2/0 ,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(2nd) = [0] p(activate) = [0] p(cons) = [1] x1 + [1] x2 + [0] p(cons1) = [1] x1 + [1] x2 + [0] p(from) = [0] p(n__from) = [1] x1 + [1] p(n__s) = [1] x1 + [0] p(s) = [0] p(2nd#) = [0] p(activate#) = [1] x1 + [0] p(from#) = [0] p(s#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: activate#(n__from(X)) = [1] X + [1] > [1] X + [0] = c_4(activate#(X)) Following rules are (at-least) weakly oriented: activate#(n__s(X)) = [1] X + [0] >= [1] X + [0] = c_5(activate#(X)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(n__from(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Signature: {2nd/1,activate/1,from/1,s/1,2nd#/1,activate#/1,from#/1,s#/1} / {cons/2,cons1/2,n__from/1,n__s/1,c_1/1,c_2/0 ,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,s#} and constructors {cons,cons1 ,n__from,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))