WORST_CASE(?,O(n^1)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) plus(s(X),Y) -> s(plus(X,Y)) times(s(X),Y) -> plus(Y,times(X,Y)) All above mentioned rules can be savely removed. * Step 2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_6() from#(X) -> c_7() pi#(X) -> c_8(2ndspos#(X,from(0()))) plus#(0(),Y) -> c_9() s#(X) -> c_10() square#(X) -> c_11(times#(X,X)) times#(0(),Y) -> c_12() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_6() from#(X) -> c_7() pi#(X) -> c_8(2ndspos#(X,from(0()))) plus#(0(),Y) -> c_9() s#(X) -> c_10() square#(X) -> c_11(times#(X,X)) times#(0(),Y) -> c_12() - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_6() from#(X) -> c_7() pi#(X) -> c_8(2ndspos#(X,from(0()))) plus#(0(),Y) -> c_9() s#(X) -> c_10() square#(X) -> c_11(times#(X,X)) times#(0(),Y) -> c_12() * Step 4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_6() from#(X) -> c_7() pi#(X) -> c_8(2ndspos#(X,from(0()))) plus#(0(),Y) -> c_9() s#(X) -> c_10() square#(X) -> c_11(times#(X,X)) times#(0(),Y) -> c_12() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(from) = {1}, uargs(s) = {1}, uargs(2ndspos#) = {2}, uargs(from#) = {1}, uargs(s#) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1}, uargs(c_11) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [5] p(2ndsneg) = [0] p(2ndspos) = [0] p(activate) = [4] x1 + [1] p(cons) = [1] x2 + [0] p(cons2) = [1] x2 + [0] p(from) = [1] x1 + [12] p(n__from) = [1] x1 + [4] p(n__s) = [1] x1 + [5] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [10] p(square) = [0] p(times) = [0] p(2ndsneg#) = [0] p(2ndspos#) = [1] x2 + [0] p(activate#) = [4] x1 + [0] p(from#) = [1] x1 + [0] p(pi#) = [0] p(plus#) = [0] p(s#) = [1] x1 + [0] p(square#) = [0] p(times#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [1] x1 + [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [1] x1 + [0] p(c_12) = [0] Following rules are strictly oriented: activate#(n__from(X)) = [4] X + [16] > [4] X + [1] = c_4(from#(activate(X))) activate#(n__s(X)) = [4] X + [20] > [4] X + [1] = c_5(s#(activate(X))) activate(X) = [4] X + [1] > [1] X + [0] = X activate(n__from(X)) = [4] X + [17] > [4] X + [13] = from(activate(X)) activate(n__s(X)) = [4] X + [21] > [4] X + [11] = s(activate(X)) from(X) = [1] X + [12] > [1] X + [9] = cons(X,n__from(n__s(X))) from(X) = [1] X + [12] > [1] X + [4] = n__from(X) s(X) = [1] X + [10] > [1] X + [5] = n__s(X) Following rules are (at-least) weakly oriented: 2ndsneg#(0(),Z) = [0] >= [0] = c_1() 2ndspos#(0(),Z) = [1] Z + [0] >= [0] = c_2() activate#(X) = [4] X + [0] >= [0] = c_3() from#(X) = [1] X + [0] >= [0] = c_6() from#(X) = [1] X + [0] >= [0] = c_7() pi#(X) = [0] >= [17] = c_8(2ndspos#(X,from(0()))) plus#(0(),Y) = [0] >= [0] = c_9() s#(X) = [1] X + [0] >= [0] = c_10() square#(X) = [0] >= [0] = c_11(times#(X,X)) times#(0(),Y) = [0] >= [0] = c_12() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() from#(X) -> c_6() from#(X) -> c_7() pi#(X) -> c_8(2ndspos#(X,from(0()))) plus#(0(),Y) -> c_9() s#(X) -> c_10() square#(X) -> c_11(times#(X,X)) times#(0(),Y) -> c_12() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,7,10} by application of Pre({1,2,3,7,10}) = {6,9}. Here rules are labelled as follows: 1: 2ndsneg#(0(),Z) -> c_1() 2: 2ndspos#(0(),Z) -> c_2() 3: activate#(X) -> c_3() 4: from#(X) -> c_6() 5: from#(X) -> c_7() 6: pi#(X) -> c_8(2ndspos#(X,from(0()))) 7: plus#(0(),Y) -> c_9() 8: s#(X) -> c_10() 9: square#(X) -> c_11(times#(X,X)) 10: times#(0(),Y) -> c_12() 11: activate#(n__from(X)) -> c_4(from#(activate(X))) 12: activate#(n__s(X)) -> c_5(s#(activate(X))) * Step 6: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() from#(X) -> c_7() pi#(X) -> c_8(2ndspos#(X,from(0()))) s#(X) -> c_10() square#(X) -> c_11(times#(X,X)) - Weak DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) plus#(0(),Y) -> c_9() times#(0(),Y) -> c_12() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,5} by application of Pre({3,5}) = {}. Here rules are labelled as follows: 1: from#(X) -> c_6() 2: from#(X) -> c_7() 3: pi#(X) -> c_8(2ndspos#(X,from(0()))) 4: s#(X) -> c_10() 5: square#(X) -> c_11(times#(X,X)) 6: 2ndsneg#(0(),Z) -> c_1() 7: 2ndspos#(0(),Z) -> c_2() 8: activate#(X) -> c_3() 9: activate#(n__from(X)) -> c_4(from#(activate(X))) 10: activate#(n__s(X)) -> c_5(s#(activate(X))) 11: plus#(0(),Y) -> c_9() 12: times#(0(),Y) -> c_12() * Step 7: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_10() - Weak DPs: 2ndsneg#(0(),Z) -> c_1() 2ndspos#(0(),Z) -> c_2() activate#(X) -> c_3() activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) pi#(X) -> c_8(2ndspos#(X,from(0()))) plus#(0(),Y) -> c_9() square#(X) -> c_11(times#(X,X)) times#(0(),Y) -> c_12() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_6() 2:S:from#(X) -> c_7() 3:S:s#(X) -> c_10() 4:W:2ndsneg#(0(),Z) -> c_1() 5:W:2ndspos#(0(),Z) -> c_2() 6:W:activate#(X) -> c_3() 7:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_7():2 -->_1 from#(X) -> c_6():1 8:W:activate#(n__s(X)) -> c_5(s#(activate(X))) -->_1 s#(X) -> c_10():3 9:W:pi#(X) -> c_8(2ndspos#(X,from(0()))) -->_1 2ndspos#(0(),Z) -> c_2():5 10:W:plus#(0(),Y) -> c_9() 11:W:square#(X) -> c_11(times#(X,X)) -->_1 times#(0(),Y) -> c_12():12 12:W:times#(0(),Y) -> c_12() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 11: square#(X) -> c_11(times#(X,X)) 12: times#(0(),Y) -> c_12() 10: plus#(0(),Y) -> c_9() 9: pi#(X) -> c_8(2ndspos#(X,from(0()))) 6: activate#(X) -> c_3() 5: 2ndspos#(0(),Z) -> c_2() 4: 2ndsneg#(0(),Z) -> c_1() * Step 8: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() from#(X) -> c_7() s#(X) -> c_10() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_7() s#(X) -> c_10() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1 ,posrecip/1,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} Problem (S) - Strict DPs: from#(X) -> c_7() s#(X) -> c_10() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1 ,posrecip/1,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} ** Step 8.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_7() s#(X) -> c_10() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_6() 2:W:from#(X) -> c_7() 3:W:s#(X) -> c_10() 7:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_6():1 -->_1 from#(X) -> c_7():2 8:W:activate#(n__s(X)) -> c_5(s#(activate(X))) -->_1 s#(X) -> c_10():3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: activate#(n__s(X)) -> c_5(s#(activate(X))) 3: s#(X) -> c_10() 2: from#(X) -> c_7() ** Step 8.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:from#(X) -> c_6() 7:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_6():1 The dependency graph contains no loops, we remove all dependency pairs. ** Step 8.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 8.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_7() s#(X) -> c_10() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_7() 2:S:s#(X) -> c_10() 3:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_6():5 -->_1 from#(X) -> c_7():1 4:W:activate#(n__s(X)) -> c_5(s#(activate(X))) -->_1 s#(X) -> c_10():2 5:W:from#(X) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: from#(X) -> c_6() ** Step 8.b:2: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_7() s#(X) -> c_10() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: from#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) s#(X) -> c_10() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1 ,posrecip/1,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} Problem (S) - Strict DPs: s#(X) -> c_10() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1 ,posrecip/1,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} *** Step 8.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) s#(X) -> c_10() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_7() 2:W:s#(X) -> c_10() 3:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_7():1 4:W:activate#(n__s(X)) -> c_5(s#(activate(X))) -->_1 s#(X) -> c_10():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: activate#(n__s(X)) -> c_5(s#(activate(X))) 2: s#(X) -> c_10() *** Step 8.b:2.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:from#(X) -> c_7() 3:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_7():1 The dependency graph contains no loops, we remove all dependency pairs. *** Step 8.b:2.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 8.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_10() - Weak DPs: activate#(n__from(X)) -> c_4(from#(activate(X))) activate#(n__s(X)) -> c_5(s#(activate(X))) from#(X) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:s#(X) -> c_10() 2:W:activate#(n__from(X)) -> c_4(from#(activate(X))) -->_1 from#(X) -> c_7():4 3:W:activate#(n__s(X)) -> c_5(s#(activate(X))) -->_1 s#(X) -> c_10():1 4:W:from#(X) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: activate#(n__from(X)) -> c_4(from#(activate(X))) 4: from#(X) -> c_7() *** Step 8.b:2.b:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_10() - Weak DPs: activate#(n__s(X)) -> c_5(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:s#(X) -> c_10() 3:W:activate#(n__s(X)) -> c_5(s#(activate(X))) -->_1 s#(X) -> c_10():1 The dependency graph contains no loops, we remove all dependency pairs. *** Step 8.b:2.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1 ,from#/1,pi#/1,plus#/2,s#/1,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,n__s/1,negrecip/1,posrecip/1 ,rcons/2,rnil/0,c_1/0,c_2/0,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,s#,square# ,times#} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))