WORST_CASE(?,O(n^1))
* Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            dbl(0()) -> 0()
            dbl(s(X)) -> s(s(dbl(X)))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            half(0()) -> 0()
            half(dbl(X)) -> X
            half(s(0())) -> 0()
            half(s(s(X))) -> s(half(X))
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            sqr(s(X)) -> s(add(sqr(X),dbl(X)))
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0
            ,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,half,s,sqr
            ,terms} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          add(s(X),Y) -> s(add(X,Y))
          dbl(s(X)) -> s(s(dbl(X)))
          first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
          half(s(0())) -> 0()
          half(s(s(X))) -> s(half(X))
          sqr(s(X)) -> s(add(sqr(X),dbl(X)))
        All above mentioned rules can be savely removed.
* Step 2: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            half(0()) -> 0()
            half(dbl(X)) -> X
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0
            ,recip/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,add,dbl,first,half,s,sqr
            ,terms} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          activate#(X) -> c_1()
          activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
          activate#(n__s(X)) -> c_3(s#(activate(X)))
          activate#(n__terms(X)) -> c_4(terms#(activate(X)))
          add#(0(),X) -> c_5()
          dbl#(0()) -> c_6()
          first#(X1,X2) -> c_7()
          first#(0(),X) -> c_8()
          half#(0()) -> c_9()
          half#(dbl(X)) -> c_10()
          s#(X) -> c_11()
          sqr#(0()) -> c_12()
          terms#(N) -> c_13(sqr#(N))
          terms#(X) -> c_14()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_3(s#(activate(X)))
            activate#(n__terms(X)) -> c_4(terms#(activate(X)))
            add#(0(),X) -> c_5()
            dbl#(0()) -> c_6()
            first#(X1,X2) -> c_7()
            first#(0(),X) -> c_8()
            half#(0()) -> c_9()
            half#(dbl(X)) -> c_10()
            s#(X) -> c_11()
            sqr#(0()) -> c_12()
            terms#(N) -> c_13(sqr#(N))
            terms#(X) -> c_14()
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            add(0(),X) -> X
            dbl(0()) -> 0()
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            half(0()) -> 0()
            half(dbl(X)) -> X
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__terms(X)) -> terms(activate(X))
          first(X1,X2) -> n__first(X1,X2)
          first(0(),X) -> nil()
          s(X) -> n__s(X)
          sqr(0()) -> 0()
          terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
          terms(X) -> n__terms(X)
          activate#(X) -> c_1()
          activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
          activate#(n__s(X)) -> c_3(s#(activate(X)))
          activate#(n__terms(X)) -> c_4(terms#(activate(X)))
          add#(0(),X) -> c_5()
          dbl#(0()) -> c_6()
          first#(X1,X2) -> c_7()
          first#(0(),X) -> c_8()
          half#(0()) -> c_9()
          s#(X) -> c_11()
          sqr#(0()) -> c_12()
          terms#(N) -> c_13(sqr#(N))
          terms#(X) -> c_14()
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_3(s#(activate(X)))
            activate#(n__terms(X)) -> c_4(terms#(activate(X)))
            add#(0(),X) -> c_5()
            dbl#(0()) -> c_6()
            first#(X1,X2) -> c_7()
            first#(0(),X) -> c_8()
            half#(0()) -> c_9()
            s#(X) -> c_11()
            sqr#(0()) -> c_12()
            terms#(N) -> c_13(sqr#(N))
            terms#(X) -> c_14()
        - Strict TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(cons) = {1},
            uargs(first) = {1,2},
            uargs(recip) = {1},
            uargs(s) = {1},
            uargs(terms) = {1},
            uargs(first#) = {1,2},
            uargs(s#) = {1},
            uargs(terms#) = {1},
            uargs(c_2) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_13) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [0]                  
             p(activate) = [5] x1 + [1]         
                  p(add) = [0]                  
                 p(cons) = [1] x1 + [1]         
                  p(dbl) = [0]                  
                p(first) = [1] x1 + [1] x2 + [5]
                 p(half) = [0]                  
             p(n__first) = [1] x1 + [1] x2 + [4]
                 p(n__s) = [1] x1 + [1]         
             p(n__terms) = [1] x1 + [1]         
                  p(nil) = [0]                  
                p(recip) = [1] x1 + [0]         
                    p(s) = [1] x1 + [4]         
                  p(sqr) = [1] x1 + [1]         
                p(terms) = [1] x1 + [4]         
            p(activate#) = [5] x1 + [6]         
                 p(add#) = [0]                  
                 p(dbl#) = [0]                  
               p(first#) = [1] x1 + [1] x2 + [8]
                p(half#) = [0]                  
                   p(s#) = [1] x1 + [4]         
                 p(sqr#) = [1] x1 + [13]        
               p(terms#) = [1] x1 + [9]         
                  p(c_1) = [0]                  
                  p(c_2) = [1] x1 + [0]         
                  p(c_3) = [1] x1 + [0]         
                  p(c_4) = [1] x1 + [0]         
                  p(c_5) = [0]                  
                  p(c_6) = [0]                  
                  p(c_7) = [0]                  
                  p(c_8) = [0]                  
                  p(c_9) = [0]                  
                 p(c_10) = [0]                  
                 p(c_11) = [0]                  
                 p(c_12) = [0]                  
                 p(c_13) = [1] x1 + [0]         
                 p(c_14) = [0]                  
          
          Following rules are strictly oriented:
                        activate#(X) = [5] X + [6]                           
                                     > [0]                                   
                                     = c_1()                                 
          
          activate#(n__first(X1,X2)) = [5] X1 + [5] X2 + [26]                
                                     > [5] X1 + [5] X2 + [10]                
                                     = c_2(first#(activate(X1),activate(X2)))
          
                  activate#(n__s(X)) = [5] X + [11]                          
                                     > [5] X + [5]                           
                                     = c_3(s#(activate(X)))                  
          
              activate#(n__terms(X)) = [5] X + [11]                          
                                     > [5] X + [10]                          
                                     = c_4(terms#(activate(X)))              
          
                       first#(X1,X2) = [1] X1 + [1] X2 + [8]                 
                                     > [0]                                   
                                     = c_7()                                 
          
                       first#(0(),X) = [1] X + [8]                           
                                     > [0]                                   
                                     = c_8()                                 
          
                               s#(X) = [1] X + [4]                           
                                     > [0]                                   
                                     = c_11()                                
          
                           sqr#(0()) = [13]                                  
                                     > [0]                                   
                                     = c_12()                                
          
                           terms#(X) = [1] X + [9]                           
                                     > [0]                                   
                                     = c_14()                                
          
                         activate(X) = [5] X + [1]                           
                                     > [1] X + [0]                           
                                     = X                                     
          
           activate(n__first(X1,X2)) = [5] X1 + [5] X2 + [21]                
                                     > [5] X1 + [5] X2 + [7]                 
                                     = first(activate(X1),activate(X2))      
          
                   activate(n__s(X)) = [5] X + [6]                           
                                     > [5] X + [5]                           
                                     = s(activate(X))                        
          
               activate(n__terms(X)) = [5] X + [6]                           
                                     > [5] X + [5]                           
                                     = terms(activate(X))                    
          
                        first(X1,X2) = [1] X1 + [1] X2 + [5]                 
                                     > [1] X1 + [1] X2 + [4]                 
                                     = n__first(X1,X2)                       
          
                        first(0(),X) = [1] X + [5]                           
                                     > [0]                                   
                                     = nil()                                 
          
                                s(X) = [1] X + [4]                           
                                     > [1] X + [1]                           
                                     = n__s(X)                               
          
                            sqr(0()) = [1]                                   
                                     > [0]                                   
                                     = 0()                                   
          
                            terms(N) = [1] N + [4]                           
                                     > [1] N + [2]                           
                                     = cons(recip(sqr(N)),n__terms(n__s(N))) 
          
                            terms(X) = [1] X + [4]                           
                                     > [1] X + [1]                           
                                     = n__terms(X)                           
          
          
          Following rules are (at-least) weakly oriented:
          add#(0(),X) =  [0]          
                      >= [0]          
                      =  c_5()        
          
            dbl#(0()) =  [0]          
                      >= [0]          
                      =  c_6()        
          
           half#(0()) =  [0]          
                      >= [0]          
                      =  c_9()        
          
            terms#(N) =  [1] N + [9]  
                      >= [1] N + [13] 
                      =  c_13(sqr#(N))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            add#(0(),X) -> c_5()
            dbl#(0()) -> c_6()
            half#(0()) -> c_9()
            terms#(N) -> c_13(sqr#(N))
        - Weak DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_3(s#(activate(X)))
            activate#(n__terms(X)) -> c_4(terms#(activate(X)))
            first#(X1,X2) -> c_7()
            first#(0(),X) -> c_8()
            s#(X) -> c_11()
            sqr#(0()) -> c_12()
            terms#(X) -> c_14()
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3}
        by application of
          Pre({1,2,3}) = {}.
        Here rules are labelled as follows:
          1: add#(0(),X) -> c_5()
          2: dbl#(0()) -> c_6()
          3: half#(0()) -> c_9()
          4: terms#(N) -> c_13(sqr#(N))
          5: activate#(X) -> c_1()
          6: activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
          7: activate#(n__s(X)) -> c_3(s#(activate(X)))
          8: activate#(n__terms(X)) -> c_4(terms#(activate(X)))
          9: first#(X1,X2) -> c_7()
          10: first#(0(),X) -> c_8()
          11: s#(X) -> c_11()
          12: sqr#(0()) -> c_12()
          13: terms#(X) -> c_14()
* Step 6: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            terms#(N) -> c_13(sqr#(N))
        - Weak DPs:
            activate#(X) -> c_1()
            activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_3(s#(activate(X)))
            activate#(n__terms(X)) -> c_4(terms#(activate(X)))
            add#(0(),X) -> c_5()
            dbl#(0()) -> c_6()
            first#(X1,X2) -> c_7()
            first#(0(),X) -> c_8()
            half#(0()) -> c_9()
            s#(X) -> c_11()
            sqr#(0()) -> c_12()
            terms#(X) -> c_14()
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:terms#(N) -> c_13(sqr#(N))
             -->_1 sqr#(0()) -> c_12():12
          
          2:W:activate#(X) -> c_1()
             
          
          3:W:activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
             -->_1 first#(0(),X) -> c_8():9
             -->_1 first#(X1,X2) -> c_7():8
          
          4:W:activate#(n__s(X)) -> c_3(s#(activate(X)))
             -->_1 s#(X) -> c_11():11
          
          5:W:activate#(n__terms(X)) -> c_4(terms#(activate(X)))
             -->_1 terms#(X) -> c_14():13
             -->_1 terms#(N) -> c_13(sqr#(N)):1
          
          6:W:add#(0(),X) -> c_5()
             
          
          7:W:dbl#(0()) -> c_6()
             
          
          8:W:first#(X1,X2) -> c_7()
             
          
          9:W:first#(0(),X) -> c_8()
             
          
          10:W:half#(0()) -> c_9()
             
          
          11:W:s#(X) -> c_11()
             
          
          12:W:sqr#(0()) -> c_12()
             
          
          13:W:terms#(X) -> c_14()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: half#(0()) -> c_9()
          7: dbl#(0()) -> c_6()
          6: add#(0(),X) -> c_5()
          13: terms#(X) -> c_14()
          4: activate#(n__s(X)) -> c_3(s#(activate(X)))
          11: s#(X) -> c_11()
          3: activate#(n__first(X1,X2)) -> c_2(first#(activate(X1),activate(X2)))
          8: first#(X1,X2) -> c_7()
          9: first#(0(),X) -> c_8()
          2: activate#(X) -> c_1()
          12: sqr#(0()) -> c_12()
* Step 7: SimplifyRHS WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            terms#(N) -> c_13(sqr#(N))
        - Weak DPs:
            activate#(n__terms(X)) -> c_4(terms#(activate(X)))
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/1,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:terms#(N) -> c_13(sqr#(N))
             
          
          5:W:activate#(n__terms(X)) -> c_4(terms#(activate(X)))
             -->_1 terms#(N) -> c_13(sqr#(N)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          terms#(N) -> c_13()
* Step 8: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            terms#(N) -> c_13()
        - Weak DPs:
            activate#(n__terms(X)) -> c_4(terms#(activate(X)))
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        Trivial
    + Details:
        Consider the dependency graph
          1:S:terms#(N) -> c_13()
             
          
          2:W:activate#(n__terms(X)) -> c_4(terms#(activate(X)))
             -->_1 terms#(N) -> c_13():1
          
        The dependency graph contains no loops, we remove all dependency pairs.
* Step 9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__first(X1,X2)) -> first(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__terms(X)) -> terms(activate(X))
            first(X1,X2) -> n__first(X1,X2)
            first(0(),X) -> nil()
            s(X) -> n__s(X)
            sqr(0()) -> 0()
            terms(N) -> cons(recip(sqr(N)),n__terms(n__s(N)))
            terms(X) -> n__terms(X)
        - Signature:
            {activate/1,add/2,dbl/1,first/2,half/1,s/1,sqr/1,terms/1,activate#/1,add#/2,dbl#/1,first#/2,half#/1,s#/1
            ,sqr#/1,terms#/1} / {0/0,cons/2,n__first/2,n__s/1,n__terms/1,nil/0,recip/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0
            ,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate#,add#,dbl#,first#,half#,s#,sqr#
            ,terms#} and constructors {0,cons,n__first,n__s,n__terms,nil,recip}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))