WORST_CASE(?,O(n^1)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt(),N,X,XS) -> U12(splitAt(activate(N),activate(XS)),activate(X)) U12(pair(YS,ZS),X) -> pair(cons(activate(X),YS),ZS) activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) and(tt(),X) -> activate(X) fst(pair(X,Y)) -> X head(cons(N,XS)) -> N natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) sel(N,XS) -> head(afterNth(N,XS)) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) splitAt(s(N),cons(X,XS)) -> U11(tt(),N,X,activate(XS)) tail(cons(N,XS)) -> activate(XS) take(N,XS) -> fst(splitAt(N,XS)) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1 ,take/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U12,activate,afterNth,and,fst,head,natsFrom,s,sel,snd ,splitAt,tail,take} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. splitAt(s(N),cons(X,XS)) -> U11(tt(),N,X,activate(XS)) All above mentioned rules can be savely removed. * Step 2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt(),N,X,XS) -> U12(splitAt(activate(N),activate(XS)),activate(X)) U12(pair(YS,ZS),X) -> pair(cons(activate(X),YS),ZS) activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) and(tt(),X) -> activate(X) fst(pair(X,Y)) -> X head(cons(N,XS)) -> N natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) sel(N,XS) -> head(afterNth(N,XS)) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) tail(cons(N,XS)) -> activate(XS) take(N,XS) -> fst(splitAt(N,XS)) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1 ,take/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U12,activate,afterNth,and,fst,head,natsFrom,s,sel,snd ,splitAt,tail,take} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(X) -> c_3() activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) and#(tt(),X) -> c_7(activate#(X)) fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() tail#(cons(N,XS)) -> c_16(activate#(XS)) take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(X) -> c_3() activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) and#(tt(),X) -> c_7(activate#(X)) fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() tail#(cons(N,XS)) -> c_16(activate#(XS)) take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) - Weak TRS: U11(tt(),N,X,XS) -> U12(splitAt(activate(N),activate(XS)),activate(X)) U12(pair(YS,ZS),X) -> pair(cons(activate(X),YS),ZS) activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) and(tt(),X) -> activate(X) fst(pair(X,Y)) -> X head(cons(N,XS)) -> N natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) sel(N,XS) -> head(afterNth(N,XS)) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) tail(cons(N,XS)) -> activate(XS) take(N,XS) -> fst(splitAt(N,XS)) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/5,c_2/1,c_3/0,c_4/2,c_5/2,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(X) -> c_3() activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) and#(tt(),X) -> c_7(activate#(X)) fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() tail#(cons(N,XS)) -> c_16(activate#(XS)) take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) * Step 4: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(X) -> c_3() activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) and#(tt(),X) -> c_7(activate#(X)) fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() tail#(cons(N,XS)) -> c_16(activate#(XS)) take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/5,c_2/1,c_3/0,c_4/2,c_5/2,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,8,9,10,11,12,14,15} by application of Pre({3,8,9,10,11,12,14,15}) = {1,2,4,5,6,7,13,16,17}. Here rules are labelled as follows: 1: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) 2: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 3: activate#(X) -> c_3() 4: activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) 5: activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) 6: afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) 7: and#(tt(),X) -> c_7(activate#(X)) 8: fst#(pair(X,Y)) -> c_8() 9: head#(cons(N,XS)) -> c_9() 10: natsFrom#(N) -> c_10() 11: natsFrom#(X) -> c_11() 12: s#(X) -> c_12() 13: sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) 14: snd#(pair(X,Y)) -> c_14() 15: splitAt#(0(),XS) -> c_15() 16: tail#(cons(N,XS)) -> c_16(activate#(XS)) 17: take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) * Step 5: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) and#(tt(),X) -> c_7(activate#(X)) sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) tail#(cons(N,XS)) -> c_16(activate#(XS)) take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) - Weak DPs: activate#(X) -> c_3() fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/5,c_2/1,c_3/0,c_4/2,c_5/2,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {5,9} by application of Pre({5,9}) = {7}. Here rules are labelled as follows: 1: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) 2: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 3: activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) 4: activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) 5: afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) 6: and#(tt(),X) -> c_7(activate#(X)) 7: sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) 8: tail#(cons(N,XS)) -> c_16(activate#(XS)) 9: take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) 10: activate#(X) -> c_3() 11: fst#(pair(X,Y)) -> c_8() 12: head#(cons(N,XS)) -> c_9() 13: natsFrom#(N) -> c_10() 14: natsFrom#(X) -> c_11() 15: s#(X) -> c_12() 16: snd#(pair(X,Y)) -> c_14() 17: splitAt#(0(),XS) -> c_15() * Step 6: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) and#(tt(),X) -> c_7(activate#(X)) sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) tail#(cons(N,XS)) -> c_16(activate#(XS)) - Weak DPs: activate#(X) -> c_3() afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/5,c_2/1,c_3/0,c_4/2,c_5/2,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {6} by application of Pre({6}) = {}. Here rules are labelled as follows: 1: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) 2: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 3: activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) 4: activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) 5: and#(tt(),X) -> c_7(activate#(X)) 6: sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) 7: tail#(cons(N,XS)) -> c_16(activate#(XS)) 8: activate#(X) -> c_3() 9: afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) 10: fst#(pair(X,Y)) -> c_8() 11: head#(cons(N,XS)) -> c_9() 12: natsFrom#(N) -> c_10() 13: natsFrom#(X) -> c_11() 14: s#(X) -> c_12() 15: snd#(pair(X,Y)) -> c_14() 16: splitAt#(0(),XS) -> c_15() 17: take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) * Step 7: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) and#(tt(),X) -> c_7(activate#(X)) tail#(cons(N,XS)) -> c_16(activate#(XS)) - Weak DPs: activate#(X) -> c_3() afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) fst#(pair(X,Y)) -> c_8() head#(cons(N,XS)) -> c_9() natsFrom#(N) -> c_10() natsFrom#(X) -> c_11() s#(X) -> c_12() sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) snd#(pair(X,Y)) -> c_14() splitAt#(0(),XS) -> c_15() take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/5,c_2/1,c_3/0,c_4/2,c_5/2,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) -->_5 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_4 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_3 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_5 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_4 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_3 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_1 U12#(pair(YS,ZS),X) -> c_2(activate#(X)):2 -->_2 splitAt#(0(),XS) -> c_15():16 -->_5 activate#(X) -> c_3():7 -->_4 activate#(X) -> c_3():7 -->_3 activate#(X) -> c_3():7 2:S:U12#(pair(YS,ZS),X) -> c_2(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_1 activate#(X) -> c_3():7 3:S:activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 natsFrom#(X) -> c_11():12 -->_1 natsFrom#(N) -> c_10():11 -->_2 activate#(X) -> c_3():7 -->_2 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 4:S:activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) -->_1 s#(X) -> c_12():13 -->_2 activate#(X) -> c_3():7 -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_2 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 5:S:and#(tt(),X) -> c_7(activate#(X)) -->_1 activate#(X) -> c_3():7 -->_1 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 6:S:tail#(cons(N,XS)) -> c_16(activate#(XS)) -->_1 activate#(X) -> c_3():7 -->_1 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 7:W:activate#(X) -> c_3() 8:W:afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) -->_2 splitAt#(0(),XS) -> c_15():16 -->_1 snd#(pair(X,Y)) -> c_14():15 9:W:fst#(pair(X,Y)) -> c_8() 10:W:head#(cons(N,XS)) -> c_9() 11:W:natsFrom#(N) -> c_10() 12:W:natsFrom#(X) -> c_11() 13:W:s#(X) -> c_12() 14:W:sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) -->_1 head#(cons(N,XS)) -> c_9():10 -->_2 afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)):8 15:W:snd#(pair(X,Y)) -> c_14() 16:W:splitAt#(0(),XS) -> c_15() 17:W:take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) -->_2 splitAt#(0(),XS) -> c_15():16 -->_1 fst#(pair(X,Y)) -> c_8():9 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 17: take#(N,XS) -> c_17(fst#(splitAt(N,XS)),splitAt#(N,XS)) 14: sel#(N,XS) -> c_13(head#(afterNth(N,XS)),afterNth#(N,XS)) 10: head#(cons(N,XS)) -> c_9() 9: fst#(pair(X,Y)) -> c_8() 8: afterNth#(N,XS) -> c_6(snd#(splitAt(N,XS)),splitAt#(N,XS)) 15: snd#(pair(X,Y)) -> c_14() 16: splitAt#(0(),XS) -> c_15() 11: natsFrom#(N) -> c_10() 12: natsFrom#(X) -> c_11() 7: activate#(X) -> c_3() 13: s#(X) -> c_12() * Step 8: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) and#(tt(),X) -> c_7(activate#(X)) tail#(cons(N,XS)) -> c_16(activate#(XS)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/5,c_2/1,c_3/0,c_4/2,c_5/2,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,splitAt#(activate(N),activate(XS)) ,activate#(N) ,activate#(XS) ,activate#(X)) -->_5 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_4 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_3 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_5 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_4 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_3 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 -->_1 U12#(pair(YS,ZS),X) -> c_2(activate#(X)):2 2:S:U12#(pair(YS,ZS),X) -> c_2(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 3:S:activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_2 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 4:S:activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_2 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 5:S:and#(tt(),X) -> c_7(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 6:S:tail#(cons(N,XS)) -> c_16(activate#(XS)) -->_1 activate#(n__s(X)) -> c_5(s#(activate(X)),activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(natsFrom#(activate(X)),activate#(X)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) * Step 9: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) and#(tt(),X) -> c_7(activate#(X)) tail#(cons(N,XS)) -> c_16(activate#(XS)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) afterNth(N,XS) -> snd(splitAt(N,XS)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) snd(pair(X,Y)) -> Y splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) and#(tt(),X) -> c_7(activate#(X)) tail#(cons(N,XS)) -> c_16(activate#(XS)) * Step 10: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) and#(tt(),X) -> c_7(activate#(X)) tail#(cons(N,XS)) -> c_16(activate#(XS)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) -->_4 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_3 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_2 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_4 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_3 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_2 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_1 U12#(pair(YS,ZS),X) -> c_2(activate#(X)):2 2:S:U12#(pair(YS,ZS),X) -> c_2(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 3:S:activate#(n__natsFrom(X)) -> c_4(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 4:S:activate#(n__s(X)) -> c_5(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 5:S:and#(tt(),X) -> c_7(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 6:S:tail#(cons(N,XS)) -> c_16(activate#(XS)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(5,and#(tt(),X) -> c_7(activate#(X))),(6,tail#(cons(N,XS)) -> c_16(activate#(XS)))] * Step 11: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} Problem (S) - Strict DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} ** Step 11.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: activate#(n__natsFrom(X)) -> c_4(activate#(X)) Consider the set of all dependency pairs 1: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) 2: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 3: activate#(n__natsFrom(X)) -> c_4(activate#(X)) 4: activate#(n__s(X)) -> c_5(activate#(X)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {3} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. *** Step 11.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2,3,4}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: {activate,natsFrom,s,U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt#,tail# ,take#} TcT has computed the following interpretation: p(0) = [3] p(U11) = [0] p(U12) = [0] p(activate) = [1] x1 + [1] p(afterNth) = [0] p(and) = [0] p(cons) = [1] x1 + [8] p(fst) = [0] p(head) = [0] p(n__natsFrom) = [1] x1 + [8] p(n__s) = [1] x1 + [0] p(natsFrom) = [1] x1 + [8] p(nil) = [0] p(pair) = [1] x2 + [7] p(s) = [1] x1 + [0] p(sel) = [8] x1 + [0] p(snd) = [2] x1 + [0] p(splitAt) = [4] x1 + [8] x2 + [8] p(tail) = [0] p(take) = [1] p(tt) = [14] p(U11#) = [2] x1 + [8] x2 + [6] x3 + [6] x4 + [3] p(U12#) = [4] x2 + [13] p(activate#) = [2] x1 + [0] p(afterNth#) = [1] x2 + [0] p(and#) = [1] x2 + [0] p(fst#) = [1] x1 + [0] p(head#) = [0] p(natsFrom#) = [0] p(s#) = [1] x1 + [0] p(sel#) = [1] x1 + [1] x2 + [0] p(snd#) = [4] x1 + [0] p(splitAt#) = [2] x1 + [1] x2 + [0] p(tail#) = [0] p(take#) = [2] x2 + [0] p(c_1) = [1] x1 + [2] x2 + [2] x3 + [1] x4 + [14] p(c_2) = [2] x1 + [13] p(c_3) = [0] p(c_4) = [1] x1 + [8] p(c_5) = [1] x1 + [0] p(c_6) = [1] x2 + [0] p(c_7) = [0] p(c_8) = [0] p(c_9) = [0] p(c_10) = [0] p(c_11) = [0] p(c_12) = [0] p(c_13) = [1] x1 + [2] x2 + [0] p(c_14) = [0] p(c_15) = [0] p(c_16) = [1] x1 + [0] p(c_17) = [1] x1 + [4] x2 + [0] Following rules are strictly oriented: activate#(n__natsFrom(X)) = [2] X + [16] > [2] X + [8] = c_4(activate#(X)) Following rules are (at-least) weakly oriented: U11#(tt(),N,X,XS) = [8] N + [6] X + [6] XS + [31] >= [4] N + [6] X + [4] XS + [31] = c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)),activate#(N),activate#(XS),activate#(X)) U12#(pair(YS,ZS),X) = [4] X + [13] >= [4] X + [13] = c_2(activate#(X)) activate#(n__s(X)) = [2] X + [0] >= [2] X + [0] = c_5(activate#(X)) activate(X) = [1] X + [1] >= [1] X + [0] = X activate(n__natsFrom(X)) = [1] X + [9] >= [1] X + [9] = natsFrom(activate(X)) activate(n__s(X)) = [1] X + [1] >= [1] X + [1] = s(activate(X)) natsFrom(N) = [1] N + [8] >= [1] N + [8] = cons(N,n__natsFrom(n__s(N))) natsFrom(X) = [1] X + [8] >= [1] X + [8] = n__natsFrom(X) s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) *** Step 11.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 11.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__s(X)) -> c_5(activate#(X)) - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: activate#(n__s(X)) -> c_5(activate#(X)) Consider the set of all dependency pairs 1: activate#(n__s(X)) -> c_5(activate#(X)) 2: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) 3: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 4: activate#(n__natsFrom(X)) -> c_4(activate#(X)) Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1)) SPACE(?,?)on application of the dependency pairs {1} These cover all (indirect) predecessors of dependency pairs {1,2,3} their number of applications is equally bounded. The dependency pairs are shifted into the weak component. **** Step 11.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__s(X)) -> c_5(activate#(X)) - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1,2,3,4}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: {activate,natsFrom,s,splitAt,U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom#,s#,sel#,snd#,splitAt# ,tail#,take#} TcT has computed the following interpretation: p(0) = [1] p(U11) = [1] x1 + [2] x2 + [0] p(U12) = [2] x1 + [2] p(activate) = [1] x1 + [0] p(afterNth) = [0] p(and) = [1] x1 + [1] x2 + [8] p(cons) = [0] p(fst) = [4] x1 + [1] p(head) = [1] x1 + [4] p(n__natsFrom) = [1] x1 + [0] p(n__s) = [1] x1 + [4] p(natsFrom) = [1] x1 + [0] p(nil) = [4] p(pair) = [1] x1 + [0] p(s) = [1] x1 + [4] p(sel) = [1] x2 + [2] p(snd) = [2] x1 + [1] p(splitAt) = [10] p(tail) = [2] p(take) = [1] x1 + [4] x2 + [0] p(tt) = [9] p(U11#) = [1] x1 + [4] x2 + [8] x3 + [8] x4 + [15] p(U12#) = [2] x1 + [4] x2 + [1] p(activate#) = [4] x1 + [0] p(afterNth#) = [4] x2 + [0] p(and#) = [1] x2 + [0] p(fst#) = [1] x1 + [0] p(head#) = [1] p(natsFrom#) = [1] x1 + [0] p(s#) = [1] x1 + [4] p(sel#) = [1] x1 + [1] p(snd#) = [4] x1 + [0] p(splitAt#) = [1] x2 + [8] p(tail#) = [0] p(take#) = [1] x2 + [2] p(c_1) = [1] x1 + [1] x2 + [2] x3 + [1] x4 + [3] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [12] p(c_6) = [2] x1 + [2] x2 + [1] p(c_7) = [1] p(c_8) = [0] p(c_9) = [1] p(c_10) = [8] p(c_11) = [1] p(c_12) = [2] p(c_13) = [2] x1 + [2] p(c_14) = [1] p(c_15) = [2] p(c_16) = [1] x1 + [0] p(c_17) = [1] x2 + [1] Following rules are strictly oriented: activate#(n__s(X)) = [4] X + [16] > [4] X + [12] = c_5(activate#(X)) Following rules are (at-least) weakly oriented: U11#(tt(),N,X,XS) = [4] N + [8] X + [8] XS + [24] >= [4] N + [8] X + [8] XS + [24] = c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)),activate#(N),activate#(XS),activate#(X)) U12#(pair(YS,ZS),X) = [4] X + [2] YS + [1] >= [4] X + [0] = c_2(activate#(X)) activate#(n__natsFrom(X)) = [4] X + [0] >= [4] X + [0] = c_4(activate#(X)) activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__natsFrom(X)) = [1] X + [0] >= [1] X + [0] = natsFrom(activate(X)) activate(n__s(X)) = [1] X + [4] >= [1] X + [4] = s(activate(X)) natsFrom(N) = [1] N + [0] >= [0] = cons(N,n__natsFrom(n__s(N))) natsFrom(X) = [1] X + [0] >= [1] X + [0] = n__natsFrom(X) s(X) = [1] X + [4] >= [1] X + [4] = n__s(X) splitAt(0(),XS) = [10] >= [4] = pair(nil(),XS) **** Step 11.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 11.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) U12#(pair(YS,ZS),X) -> c_2(activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) -->_4 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_3 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_2 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_4 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_3 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_2 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_1 U12#(pair(YS,ZS),X) -> c_2(activate#(X)):2 2:W:U12#(pair(YS,ZS),X) -> c_2(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 3:W:activate#(n__natsFrom(X)) -> c_4(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 4:W:activate#(n__s(X)) -> c_5(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) 2: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 4: activate#(n__s(X)) -> c_5(activate#(X)) 3: activate#(n__natsFrom(X)) -> c_4(activate#(X)) **** Step 11.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 11.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) activate#(n__natsFrom(X)) -> c_4(activate#(X)) activate#(n__s(X)) -> c_5(activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:U12#(pair(YS,ZS),X) -> c_2(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 2:W:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) -->_4 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_3 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_2 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_4 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_3 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_2 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 -->_1 U12#(pair(YS,ZS),X) -> c_2(activate#(X)):1 3:W:activate#(n__natsFrom(X)) -> c_4(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 4:W:activate#(n__s(X)) -> c_5(activate#(X)) -->_1 activate#(n__s(X)) -> c_5(activate#(X)):4 -->_1 activate#(n__natsFrom(X)) -> c_4(activate#(X)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: activate#(n__s(X)) -> c_5(activate#(X)) 3: activate#(n__natsFrom(X)) -> c_4(activate#(X)) ** Step 11.b:2: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: U12#(pair(YS,ZS),X) -> c_2(activate#(X)) - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/4,c_2/1,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:U12#(pair(YS,ZS),X) -> c_2(activate#(X)) 2:W:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X)) ,activate#(N) ,activate#(XS) ,activate#(X)) -->_1 U12#(pair(YS,ZS),X) -> c_2(activate#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X))) U12#(pair(YS,ZS),X) -> c_2() ** Step 11.b:3: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: U12#(pair(YS,ZS),X) -> c_2() - Weak DPs: U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X))) - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:U12#(pair(YS,ZS),X) -> c_2() 2:W:U11#(tt(),N,X,XS) -> c_1(U12#(splitAt(activate(N),activate(XS)),activate(X))) -->_1 U12#(pair(YS,ZS),X) -> c_2():1 The dependency graph contains no loops, we remove all dependency pairs. ** Step 11.b:4: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__natsFrom(X)) -> natsFrom(activate(X)) activate(n__s(X)) -> s(activate(X)) natsFrom(N) -> cons(N,n__natsFrom(n__s(N))) natsFrom(X) -> n__natsFrom(X) s(X) -> n__s(X) splitAt(0(),XS) -> pair(nil(),XS) - Signature: {U11/4,U12/2,activate/1,afterNth/2,and/2,fst/1,head/1,natsFrom/1,s/1,sel/2,snd/1,splitAt/2,tail/1,take/2 ,U11#/4,U12#/2,activate#/1,afterNth#/2,and#/2,fst#/1,head#/1,natsFrom#/1,s#/1,sel#/2,snd#/1,splitAt#/2 ,tail#/1,take#/2} / {0/0,cons/2,n__natsFrom/1,n__s/1,nil/0,pair/2,tt/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/1,c_6/2 ,c_7/1,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0,c_16/1,c_17/2} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,afterNth#,and#,fst#,head#,natsFrom# ,s#,sel#,snd#,splitAt#,tail#,take#} and constructors {0,cons,n__natsFrom,n__s,nil,pair,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))