WORST_CASE(?,O(n^3))
* Step 1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52
            ,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          0#() -> c_1()
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U16#(tt()) -> c_7()
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                              ,isNatKind#(activate(V1))
                              ,activate#(V1)
                              ,activate#(V1))
          U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U23#(tt()) -> c_10()
          U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U32#(tt()) -> c_12()
          U41#(tt()) -> c_13()
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                              ,isNatKind#(activate(N))
                              ,activate#(N)
                              ,activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                ,plus#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M))
          activate#(X) -> c_20()
          activate#(n__0()) -> c_21(0#())
          activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
          isNat#(n__0()) -> c_24()
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNatKind#(n__0()) -> c_27()
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
          plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
          plus#(X1,X2) -> c_32()
          s#(X) -> c_33()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U16#(tt()) -> c_7()
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U23#(tt()) -> c_10()
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(X) -> c_20()
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
            isNat#(n__0()) -> c_24()
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__0()) -> c_27()
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
            plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
            plus#(X1,X2) -> c_32()
            s#(X) -> c_33()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,7,10,12,13,20,24,27,30,31,32,33}
        by application of
          Pre({1,7,10,12,13,20,24,27,30,31,32,33}) = {2,3,4,5,6,8,9,11,14,15,16,17,18,19,21,22,23,25,26,28,29}.
        Here rules are labelled as follows:
          1: 0#() -> c_1()
          2: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          6: U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          7: U16#(tt()) -> c_7()
          8: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          9: U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          10: U23#(tt()) -> c_10()
          11: U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          12: U32#(tt()) -> c_12()
          13: U41#(tt()) -> c_13()
          14: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
          15: U52#(tt(),N) -> c_15(activate#(N))
          16: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          17: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          18: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          19: U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          20: activate#(X) -> c_20()
          21: activate#(n__0()) -> c_21(0#())
          22: activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          23: activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
          24: isNat#(n__0()) -> c_24()
          25: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          26: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          27: isNatKind#(n__0()) -> c_27()
          28: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          29: isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          30: plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
          31: plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
          32: plus#(X1,X2) -> c_32()
          33: s#(X) -> c_33()
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_7()
            U23#(tt()) -> c_10()
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            activate#(X) -> c_20()
            isNat#(n__0()) -> c_24()
            isNatKind#(n__0()) -> c_27()
            plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
            plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
            plus#(X1,X2) -> c_32()
            s#(X) -> c_33()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {15}
        by application of
          Pre({15}) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          7: U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          8: U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          9: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                 ,isNatKind#(activate(N))
                                 ,activate#(N)
                                 ,activate#(N))
          10: U52#(tt(),N) -> c_15(activate#(N))
          11: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          12: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          13: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          14: U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          15: activate#(n__0()) -> c_21(0#())
          16: activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          17: activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
          18: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          19: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          20: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          21: isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          22: 0#() -> c_1()
          23: U16#(tt()) -> c_7()
          24: U23#(tt()) -> c_10()
          25: U32#(tt()) -> c_12()
          26: U41#(tt()) -> c_13()
          27: activate#(X) -> c_20()
          28: isNat#(n__0()) -> c_24()
          29: isNatKind#(n__0()) -> c_27()
          30: plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
          31: plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
          32: plus#(X1,X2) -> c_32()
          33: s#(X) -> c_33()
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_7()
            U23#(tt()) -> c_10()
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            activate#(X) -> c_20()
            activate#(n__0()) -> c_21(0#())
            isNat#(n__0()) -> c_24()
            isNatKind#(n__0()) -> c_27()
            plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
            plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
            plus#(X1,X2) -> c_32()
            s#(X) -> c_33()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):2
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):3
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):4
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
             -->_2 isNat#(n__0()) -> c_24():28
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_2 isNat#(n__0()) -> c_24():28
             -->_3 activate#(X) -> c_20():26
             -->_1 U16#(tt()) -> c_7():22
          
          6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_2 isNat#(n__0()) -> c_24():28
             -->_3 activate#(X) -> c_20():26
             -->_1 U23#(tt()) -> c_10():23
          
          8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_3 activate#(X) -> c_20():26
             -->_1 U32#(tt()) -> c_12():24
          
          9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U52#(tt(),N) -> c_15(activate#(N)):10
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          10:S:U52#(tt(),N) -> c_15(activate#(N))
             -->_1 activate#(n__0()) -> c_21(0#()):27
             -->_1 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_1 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 activate#(X) -> c_20():26
          
          11:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                     ,isNatKind#(activate(M))
                                     ,activate#(M)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):12
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          12:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                     ,isNat#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):13
             -->_2 isNat#(n__0()) -> c_24():28
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          13:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                         ,plus#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)):14
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          14:S:U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                     ,plus#(activate(N),activate(M))
                                     ,activate#(N)
                                     ,activate#(M))
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 s#(X) -> c_33():33
             -->_2 plus#(X1,X2) -> c_32():32
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
          
          15:S:activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_1 plus#(X1,X2) -> c_32():32
             -->_3 activate#(X) -> c_20():26
             -->_2 activate#(X) -> c_20():26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          16:S:activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
             -->_2 activate#(n__0()) -> c_21(0#()):27
             -->_1 s#(X) -> c_33():33
             -->_2 activate#(X) -> c_20():26
             -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          17:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_5 activate#(n__0()) -> c_21(0#()):27
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():26
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          18:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)):6
          
          19:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_4 activate#(n__0()) -> c_21(0#()):27
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():26
             -->_3 activate#(X) -> c_20():26
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
          
          20:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
             -->_3 activate#(n__0()) -> c_21(0#()):27
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_3 activate#(X) -> c_20():26
             -->_1 U41#(tt()) -> c_13():25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          21:W:0#() -> c_1()
             
          
          22:W:U16#(tt()) -> c_7()
             
          
          23:W:U23#(tt()) -> c_10()
             
          
          24:W:U32#(tt()) -> c_12()
             
          
          25:W:U41#(tt()) -> c_13()
             
          
          26:W:activate#(X) -> c_20()
             
          
          27:W:activate#(n__0()) -> c_21(0#())
             -->_1 0#() -> c_1():21
          
          28:W:isNat#(n__0()) -> c_24()
             
          
          29:W:isNatKind#(n__0()) -> c_27()
             
          
          30:W:plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
             
          
          31:W:plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
             
          
          32:W:plus#(X1,X2) -> c_32()
             
          
          33:W:s#(X) -> c_33()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          31: plus#(N,s(M)) -> c_31(U61#(isNat(M),M,N),isNat#(M))
          30: plus#(N,0()) -> c_30(U51#(isNat(N),N),isNat#(N))
          22: U16#(tt()) -> c_7()
          23: U23#(tt()) -> c_10()
          28: isNat#(n__0()) -> c_24()
          24: U32#(tt()) -> c_12()
          32: plus#(X1,X2) -> c_32()
          33: s#(X) -> c_33()
          25: U41#(tt()) -> c_13()
          26: activate#(X) -> c_20()
          29: isNatKind#(n__0()) -> c_27()
          27: activate#(n__0()) -> c_21(0#())
          21: 0#() -> c_1()
* Step 5: SimplifyRHS WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/3,c_23/2
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):2
          
          2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):3
          
          3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):4
          
          4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
          
          5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
          
          7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U52#(tt(),N) -> c_15(activate#(N)):10
          
          10:S:U52#(tt(),N) -> c_15(activate#(N))
             -->_1 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_1 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          11:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                     ,isNatKind#(activate(M))
                                     ,activate#(M)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):12
          
          12:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                     ,isNat#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):17
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):13
          
          13:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                         ,plus#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)):14
          
          14:S:U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                     ,plus#(activate(N),activate(M))
                                     ,activate#(N)
                                     ,activate#(M))
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          15:S:activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          16:S:activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X))
             -->_2 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_2 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
          17:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_5 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          18:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)):6
          
          19:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_4 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
             -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
          
          20:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):20
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):19
             -->_3 activate#(n__s(X)) -> c_23(s#(activate(X)),activate#(X)):16
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):15
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
* Step 6: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(activate#(X))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                              ,isNatKind#(activate(V1))
                              ,activate#(V1)
                              ,activate#(V1))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                              ,isNatKind#(activate(N))
                              ,activate#(N)
                              ,activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
        and a lower component
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        Further, following extension rules are added to the lower component.
          U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
          U11#(tt(),V1,V2) -> activate#(V1)
          U11#(tt(),V1,V2) -> activate#(V2)
          U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
          U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U12#(tt(),V1,V2) -> activate#(V1)
          U12#(tt(),V1,V2) -> activate#(V2)
          U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13#(tt(),V1,V2) -> activate#(V1)
          U13#(tt(),V1,V2) -> activate#(V2)
          U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
          U14#(tt(),V1,V2) -> activate#(V1)
          U14#(tt(),V1,V2) -> activate#(V2)
          U14#(tt(),V1,V2) -> isNat#(activate(V1))
          U15#(tt(),V2) -> activate#(V2)
          U15#(tt(),V2) -> isNat#(activate(V2))
          U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
          U21#(tt(),V1) -> activate#(V1)
          U21#(tt(),V1) -> isNatKind#(activate(V1))
          U22#(tt(),V1) -> activate#(V1)
          U22#(tt(),V1) -> isNat#(activate(V1))
          U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
          U51#(tt(),N) -> activate#(N)
          U51#(tt(),N) -> isNatKind#(activate(N))
          U52#(tt(),N) -> activate#(N)
          U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
          U61#(tt(),M,N) -> activate#(M)
          U61#(tt(),M,N) -> activate#(N)
          U61#(tt(),M,N) -> isNatKind#(activate(M))
          U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
          U62#(tt(),M,N) -> activate#(M)
          U62#(tt(),M,N) -> activate#(N)
          U62#(tt(),M,N) -> isNat#(activate(N))
          U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
          U63#(tt(),M,N) -> activate#(M)
          U63#(tt(),M,N) -> activate#(N)
          U63#(tt(),M,N) -> isNatKind#(activate(N))
          U64#(tt(),M,N) -> activate#(M)
          U64#(tt(),M,N) -> activate#(N)
          isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat#(n__plus(V1,V2)) -> activate#(V1)
          isNat#(n__plus(V1,V2)) -> activate#(V2)
          isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
          isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
          isNat#(n__s(V1)) -> activate#(V1)
          isNat#(n__s(V1)) -> isNatKind#(activate(V1))
** Step 6.a:1: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {9,13}
        by application of
          Pre({9,13}) = {8,12}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          7: U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          8: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                 ,isNatKind#(activate(N))
                                 ,activate#(N)
                                 ,activate#(N))
          9: U52#(tt(),N) -> c_15(activate#(N))
          10: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          11: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          12: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          13: U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
          14: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          15: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
** Step 6.a:2: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
        - Weak DPs:
            U52#(tt(),N) -> c_15(activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {8,11}
        by application of
          Pre({8,11}) = {10}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          7: U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
          8: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                 ,isNatKind#(activate(N))
                                 ,activate#(N)
                                 ,activate#(N))
          9: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                   ,isNatKind#(activate(M))
                                   ,activate#(M)
                                   ,activate#(M)
                                   ,activate#(N))
          10: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          11: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          12: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          13: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          14: U52#(tt(),N) -> c_15(activate#(N))
          15: U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
** Step 6.a:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
        - Weak DPs:
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):2
          
          2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):3
          
          3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):4
          
          4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2)):5
          
          5:S:U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
          
          6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
             -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1)):7
          
          7:S:U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
          
          8:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):9
          
          9:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):14
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
          
          10:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          11:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)):6
          
          12:W:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                   ,isNatKind#(activate(N))
                                   ,activate#(N)
                                   ,activate#(N))
             -->_1 U52#(tt(),N) -> c_15(activate#(N)):13
          
          13:W:U52#(tt(),N) -> c_15(activate#(N))
             
          
          14:W:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_1 U64#(tt(),M,N) -> c_19(activate#(N),activate#(M)):15
          
          15:W:U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          12: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
          13: U52#(tt(),N) -> c_15(activate#(N))
          14: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          15: U64#(tt(),M,N) -> c_19(activate#(N),activate#(M))
** Step 6.a:4: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):2
          
          2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):3
          
          3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):4
          
          4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2)):5
          
          5:S:U15#(tt(),V2) -> c_6(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
          
          6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
             -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1)):7
          
          7:S:U22#(tt(),V1) -> c_9(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
          
          8:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):9
          
          9:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
          
          10:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          11:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
          U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
** Step 6.a:5: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#
          ,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [4]                           
                 p(U12) = [4] x2 + [1] x3 + [7]         
                 p(U13) = [4] x1 + [2] x3 + [3]         
                 p(U14) = [1] x2 + [5]                  
                 p(U15) = [1] x1 + [2] x2 + [4]         
                 p(U16) = [6]                           
                 p(U21) = [0]                           
                 p(U22) = [1] x1 + [1] x2 + [0]         
                 p(U23) = [1]                           
                 p(U31) = [4]                           
                 p(U32) = [5] x1 + [0]                  
                 p(U41) = [3]                           
                 p(U51) = [3] x1 + [1] x2 + [1]         
                 p(U52) = [6] x1 + [0]                  
                 p(U61) = [3] x1 + [5] x2 + [1] x3 + [4]
                 p(U62) = [1] x2 + [0]                  
                 p(U63) = [2] x1 + [1] x2 + [0]         
                 p(U64) = [2] x3 + [0]                  
            p(activate) = [0]                           
               p(isNat) = [1] x1 + [1]                  
           p(isNatKind) = [1]                           
                p(n__0) = [0]                           
             p(n__plus) = [7]                           
                p(n__s) = [1] x1 + [7]                  
                p(plus) = [4] x2 + [4]                  
                   p(s) = [1]                           
                  p(tt) = [0]                           
                  p(0#) = [2]                           
                p(U11#) = [0]                           
                p(U12#) = [0]                           
                p(U13#) = [0]                           
                p(U14#) = [0]                           
                p(U15#) = [0]                           
                p(U16#) = [4] x1 + [0]                  
                p(U21#) = [0]                           
                p(U22#) = [0]                           
                p(U23#) = [2]                           
                p(U31#) = [0]                           
                p(U32#) = [1]                           
                p(U41#) = [1] x1 + [0]                  
                p(U51#) = [1] x1 + [2] x2 + [1]         
                p(U52#) = [0]                           
                p(U61#) = [4] x1 + [4] x2 + [4] x3 + [5]
                p(U62#) = [1]                           
                p(U63#) = [1] x1 + [0]                  
                p(U64#) = [1] x1 + [2] x2 + [2] x3 + [0]
           p(activate#) = [0]                           
              p(isNat#) = [0]                           
          p(isNatKind#) = [4] x1 + [0]                  
               p(plus#) = [1]                           
                  p(s#) = [1] x1 + [2]                  
                 p(c_1) = [0]                           
                 p(c_2) = [4] x1 + [0]                  
                 p(c_3) = [4] x1 + [0]                  
                 p(c_4) = [4] x1 + [0]                  
                 p(c_5) = [4] x1 + [1] x2 + [0]         
                 p(c_6) = [1] x1 + [0]                  
                 p(c_7) = [0]                           
                 p(c_8) = [4] x1 + [0]                  
                 p(c_9) = [4] x1 + [0]                  
                p(c_10) = [0]                           
                p(c_11) = [1] x2 + [0]                  
                p(c_12) = [1]                           
                p(c_13) = [1]                           
                p(c_14) = [1] x1 + [1] x2 + [1]         
                p(c_15) = [2] x1 + [4]                  
                p(c_16) = [1] x1 + [0]                  
                p(c_17) = [1] x1 + [1]                  
                p(c_18) = [1] x1 + [0]                  
                p(c_19) = [1] x1 + [1]                  
                p(c_20) = [4]                           
                p(c_21) = [4]                           
                p(c_22) = [4] x2 + [1]                  
                p(c_23) = [0]                           
                p(c_24) = [0]                           
                p(c_25) = [1] x1 + [0]                  
                p(c_26) = [4] x1 + [0]                  
                p(c_27) = [0]                           
                p(c_28) = [1] x2 + [1] x3 + [1] x4 + [2]
                p(c_29) = [1] x1 + [4] x2 + [4]         
                p(c_30) = [1] x1 + [1] x2 + [1]         
                p(c_31) = [0]                           
                p(c_32) = [0]                           
                p(c_33) = [1]                           
        
        Following rules are strictly oriented:
        U61#(tt(),M,N) = [4] M + [4] N + [5]                                       
                       > [1]                                                       
                       = c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
        
        
        Following rules are (at-least) weakly oriented:
              U11#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
              U12#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
              U13#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
              U14#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                 U15#(tt(),V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_6(isNat#(activate(V2)))                                       
        
                 U21#(tt(),V1) =  [0]                                                             
                               >= [0]                                                             
                               =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                 U22#(tt(),V1) =  [0]                                                             
                               >= [0]                                                             
                               =  c_9(isNat#(activate(V1)))                                       
        
                U62#(tt(),M,N) =  [1]                                                             
                               >= [1]                                                             
                               =  c_17(isNat#(activate(N)))                                       
        
        isNat#(n__plus(V1,V2)) =  [0]                                                             
                               >= [0]                                                             
                               =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
              isNat#(n__s(V1)) =  [0]                                                             
                               >= [0]                                                             
                               =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
** Step 6.a:6: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#
          ,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [1]                           
                 p(U11) = [0]                           
                 p(U12) = [4] x2 + [1]                  
                 p(U13) = [2] x2 + [6]                  
                 p(U14) = [1] x1 + [2]                  
                 p(U15) = [1] x1 + [2]                  
                 p(U16) = [1] x1 + [6]                  
                 p(U21) = [1] x1 + [1] x2 + [2]         
                 p(U22) = [2] x2 + [4]                  
                 p(U23) = [4] x1 + [2]                  
                 p(U31) = [2]                           
                 p(U32) = [1] x1 + [2]                  
                 p(U41) = [0]                           
                 p(U51) = [6]                           
                 p(U52) = [0]                           
                 p(U61) = [1] x1 + [6]                  
                 p(U62) = [2] x1 + [4] x2 + [4] x3 + [4]
                 p(U63) = [1] x1 + [1] x2 + [4]         
                 p(U64) = [1] x1 + [1] x2 + [1] x3 + [0]
            p(activate) = [0]                           
               p(isNat) = [0]                           
           p(isNatKind) = [0]                           
                p(n__0) = [2]                           
             p(n__plus) = [1]                           
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [4] x2 + [4]                  
                   p(s) = [2] x1 + [2]                  
                  p(tt) = [0]                           
                  p(0#) = [1]                           
                p(U11#) = [0]                           
                p(U12#) = [0]                           
                p(U13#) = [0]                           
                p(U14#) = [0]                           
                p(U15#) = [0]                           
                p(U16#) = [1] x1 + [0]                  
                p(U21#) = [0]                           
                p(U22#) = [0]                           
                p(U23#) = [1] x1 + [1]                  
                p(U31#) = [1] x1 + [0]                  
                p(U32#) = [4]                           
                p(U41#) = [1] x1 + [1]                  
                p(U51#) = [0]                           
                p(U52#) = [1]                           
                p(U61#) = [1] x3 + [7]                  
                p(U62#) = [2]                           
                p(U63#) = [1] x3 + [1]                  
                p(U64#) = [1]                           
           p(activate#) = [1] x1 + [4]                  
              p(isNat#) = [0]                           
          p(isNatKind#) = [0]                           
               p(plus#) = [1] x2 + [1]                  
                  p(s#) = [1]                           
                 p(c_1) = [2]                           
                 p(c_2) = [1] x1 + [0]                  
                 p(c_3) = [4] x1 + [0]                  
                 p(c_4) = [4] x1 + [0]                  
                 p(c_5) = [1] x1 + [2] x2 + [0]         
                 p(c_6) = [4] x1 + [0]                  
                 p(c_7) = [1]                           
                 p(c_8) = [4] x1 + [0]                  
                 p(c_9) = [4] x1 + [0]                  
                p(c_10) = [0]                           
                p(c_11) = [2] x1 + [4] x2 + [1]         
                p(c_12) = [1]                           
                p(c_13) = [0]                           
                p(c_14) = [1] x4 + [1]                  
                p(c_15) = [1]                           
                p(c_16) = [2] x1 + [3]                  
                p(c_17) = [1] x1 + [0]                  
                p(c_18) = [1] x2 + [1] x4 + [0]         
                p(c_19) = [1]                           
                p(c_20) = [2]                           
                p(c_21) = [4]                           
                p(c_22) = [1] x1 + [1] x2 + [2]         
                p(c_23) = [4] x1 + [0]                  
                p(c_24) = [1]                           
                p(c_25) = [4] x1 + [0]                  
                p(c_26) = [2] x1 + [0]                  
                p(c_27) = [2]                           
                p(c_28) = [1] x2 + [4] x3 + [0]         
                p(c_29) = [0]                           
                p(c_30) = [4] x1 + [0]                  
                p(c_31) = [1] x1 + [1] x2 + [2]         
                p(c_32) = [0]                           
                p(c_33) = [0]                           
        
        Following rules are strictly oriented:
        U62#(tt(),M,N) = [2]                      
                       > [0]                      
                       = c_17(isNat#(activate(N)))
        
        
        Following rules are (at-least) weakly oriented:
              U11#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
              U12#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
              U13#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
              U14#(tt(),V1,V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                 U15#(tt(),V2) =  [0]                                                             
                               >= [0]                                                             
                               =  c_6(isNat#(activate(V2)))                                       
        
                 U21#(tt(),V1) =  [0]                                                             
                               >= [0]                                                             
                               =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                 U22#(tt(),V1) =  [0]                                                             
                               >= [0]                                                             
                               =  c_9(isNat#(activate(V1)))                                       
        
                U61#(tt(),M,N) =  [1] N + [7]                                                     
                               >= [7]                                                             
                               =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
        isNat#(n__plus(V1,V2)) =  [0]                                                             
                               >= [0]                                                             
                               =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
              isNat#(n__s(V1)) =  [0]                                                             
                               >= [0]                                                             
                               =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
** Step 6.a:7: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                 p(U11) = [1] x1 + [2]                           
                 p(U12) = [4] x1 + [4]                           
                 p(U13) = [4] x1 + [4] x3 + [6]                  
                 p(U14) = [4] x3 + [0]                           
                 p(U15) = [2] x2 + [5]                           
                 p(U16) = [3] x1 + [5]                           
                 p(U21) = [6] x2 + [1]                           
                 p(U22) = [1] x1 + [2] x2 + [3]                  
                 p(U23) = [2]                                    
                 p(U31) = [4]                                    
                 p(U32) = [0]                                    
                 p(U41) = [0]                                    
                 p(U51) = [1] x2 + [0]                           
                 p(U52) = [1] x2 + [0]                           
                 p(U61) = [1] x2 + [1] x3 + [1]                  
                 p(U62) = [1] x2 + [1] x3 + [1]                  
                 p(U63) = [1] x2 + [1] x3 + [1]                  
                 p(U64) = [1] x2 + [1] x3 + [1]                  
            p(activate) = [1] x1 + [0]                           
               p(isNat) = [2]                                    
           p(isNatKind) = [0]                                    
                p(n__0) = [0]                                    
             p(n__plus) = [1] x1 + [1] x2 + [0]                  
                p(n__s) = [1] x1 + [1]                           
                p(plus) = [1] x1 + [1] x2 + [0]                  
                   p(s) = [1] x1 + [1]                           
                  p(tt) = [0]                                    
                  p(0#) = [4]                                    
                p(U11#) = [1] x2 + [1] x3 + [0]                  
                p(U12#) = [1] x2 + [1] x3 + [0]                  
                p(U13#) = [1] x2 + [1] x3 + [0]                  
                p(U14#) = [1] x2 + [1] x3 + [0]                  
                p(U15#) = [1] x2 + [0]                           
                p(U16#) = [1] x1 + [0]                           
                p(U21#) = [1] x2 + [0]                           
                p(U22#) = [1] x2 + [0]                           
                p(U23#) = [2]                                    
                p(U31#) = [0]                                    
                p(U32#) = [1]                                    
                p(U41#) = [4] x1 + [0]                           
                p(U51#) = [1] x2 + [0]                           
                p(U52#) = [1] x1 + [2] x2 + [4]                  
                p(U61#) = [4] x2 + [4] x3 + [3]                  
                p(U62#) = [4] x3 + [2]                           
                p(U63#) = [2] x3 + [4]                           
                p(U64#) = [1]                                    
           p(activate#) = [1] x1 + [0]                           
              p(isNat#) = [1] x1 + [0]                           
          p(isNatKind#) = [1] x1 + [1]                           
               p(plus#) = [1]                                    
                  p(s#) = [2] x1 + [1]                           
                 p(c_1) = [0]                                    
                 p(c_2) = [1] x1 + [0]                           
                 p(c_3) = [1] x1 + [0]                           
                 p(c_4) = [1] x1 + [0]                           
                 p(c_5) = [1] x1 + [1] x2 + [0]                  
                 p(c_6) = [1] x1 + [0]                           
                 p(c_7) = [0]                                    
                 p(c_8) = [1] x1 + [0]                           
                 p(c_9) = [1] x1 + [0]                           
                p(c_10) = [1]                                    
                p(c_11) = [1] x1 + [0]                           
                p(c_12) = [0]                                    
                p(c_13) = [2]                                    
                p(c_14) = [2] x2 + [1] x4 + [1]                  
                p(c_15) = [2] x1 + [1]                           
                p(c_16) = [1] x1 + [1]                           
                p(c_17) = [1] x1 + [2]                           
                p(c_18) = [1] x1 + [1] x2 + [2] x3 + [2] x4 + [1]
                p(c_19) = [1] x1 + [1] x2 + [2]                  
                p(c_20) = [1]                                    
                p(c_21) = [0]                                    
                p(c_22) = [1] x2 + [4]                           
                p(c_23) = [1] x1 + [0]                           
                p(c_24) = [1]                                    
                p(c_25) = [1] x1 + [0]                           
                p(c_26) = [1] x1 + [0]                           
                p(c_27) = [0]                                    
                p(c_28) = [1] x1 + [1] x3 + [2]                  
                p(c_29) = [4] x2 + [2]                           
                p(c_30) = [4] x1 + [1] x2 + [1]                  
                p(c_31) = [4] x1 + [1] x2 + [2]                  
                p(c_32) = [1]                                    
                p(c_33) = [1]                                    
        
        Following rules are strictly oriented:
        isNat#(n__s(V1)) = [1] V1 + [1]                                    
                         > [1] V1 + [0]                                    
                         = c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [1] V2 + [0]                                                    
                                 >= [1] V2 + [0]                                                    
                                 =  c_6(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [1] V1 + [0]                                                    
                                 >= [1] V1 + [0]                                                    
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [1] V1 + [0]                                                    
                                 >= [1] V1 + [0]                                                    
                                 =  c_9(isNat#(activate(V1)))                                       
        
                  U61#(tt(),M,N) =  [4] M + [4] N + [3]                                             
                                 >= [4] N + [3]                                                     
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [4] N + [2]                                                     
                                 >= [1] N + [2]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                             0() =  [0]                                                             
                                 >= [0]                                                             
                                 =  n__0()                                                          
        
                     U51(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [1]                                             
                                 >= [1] M + [1] N + [1]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [1]                                             
                                 >= [1] M + [1] N + [1]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [1]                                             
                                 >= [1] M + [1] N + [1]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [1]                                             
                                 >= [1] M + [1] N + [1]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [0]                                                             
                                 >= [0]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                           
                                 >= [1] X1 + [1] X2 + [0]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [1]                                                     
                                 >= [1] X + [1]                                                     
                                 =  s(activate(X))                                                  
        
                     plus(N,0()) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [1]                                             
                                 >= [1] M + [1] N + [1]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                           
                                 >= [1] X1 + [1] X2 + [0]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [1]                                                     
                                 >= [1] X + [1]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:8: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U51,U52,U61,U62,U63,U64,activate,isNat,plus,s,0#,U11#,U12#,U13#
          ,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#
          ,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [1]                           
                 p(U11) = [0]                           
                 p(U12) = [0]                           
                 p(U13) = [0]                           
                 p(U14) = [0]                           
                 p(U15) = [0]                           
                 p(U16) = [0]                           
                 p(U21) = [0]                           
                 p(U22) = [0]                           
                 p(U23) = [0]                           
                 p(U31) = [1]                           
                 p(U32) = [1] x1 + [5]                  
                 p(U41) = [3]                           
                 p(U51) = [1] x1 + [1] x2 + [0]         
                 p(U52) = [1] x2 + [0]                  
                 p(U61) = [1] x2 + [1] x3 + [2]         
                 p(U62) = [1] x2 + [1] x3 + [2]         
                 p(U63) = [1] x2 + [1] x3 + [2]         
                 p(U64) = [1] x2 + [1] x3 + [2]         
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1]                           
           p(isNatKind) = [0]                           
                p(n__0) = [1]                           
             p(n__plus) = [1] x1 + [1] x2 + [0]         
                p(n__s) = [1] x1 + [2]                  
                p(plus) = [1] x1 + [1] x2 + [0]         
                   p(s) = [1] x1 + [2]                  
                  p(tt) = [0]                           
                  p(0#) = [0]                           
                p(U11#) = [6] x2 + [6] x3 + [0]         
                p(U12#) = [6] x2 + [6] x3 + [0]         
                p(U13#) = [6] x2 + [6] x3 + [0]         
                p(U14#) = [6] x2 + [6] x3 + [0]         
                p(U15#) = [6] x2 + [0]                  
                p(U16#) = [1] x1 + [0]                  
                p(U21#) = [6] x2 + [5]                  
                p(U22#) = [6] x2 + [4]                  
                p(U23#) = [0]                           
                p(U31#) = [4] x1 + [0]                  
                p(U32#) = [0]                           
                p(U41#) = [1]                           
                p(U51#) = [1]                           
                p(U52#) = [1] x1 + [0]                  
                p(U61#) = [1] x1 + [1] x2 + [6] x3 + [6]
                p(U62#) = [1] x2 + [6] x3 + [1]         
                p(U63#) = [1] x2 + [0]                  
                p(U64#) = [1] x1 + [0]                  
           p(activate#) = [1] x1 + [1]                  
              p(isNat#) = [6] x1 + [0]                  
          p(isNatKind#) = [2] x1 + [0]                  
               p(plus#) = [4] x1 + [0]                  
                  p(s#) = [1] x1 + [1]                  
                 p(c_1) = [2]                           
                 p(c_2) = [1] x1 + [0]                  
                 p(c_3) = [1] x1 + [0]                  
                 p(c_4) = [1] x1 + [0]                  
                 p(c_5) = [1] x1 + [1] x2 + [0]         
                 p(c_6) = [1] x1 + [0]                  
                 p(c_7) = [1]                           
                 p(c_8) = [1] x1 + [0]                  
                 p(c_9) = [1] x1 + [4]                  
                p(c_10) = [1]                           
                p(c_11) = [1] x1 + [0]                  
                p(c_12) = [4]                           
                p(c_13) = [0]                           
                p(c_14) = [4] x3 + [1] x4 + [4]         
                p(c_15) = [1]                           
                p(c_16) = [1] x1 + [5]                  
                p(c_17) = [1] x1 + [1]                  
                p(c_18) = [1] x1 + [1] x3 + [1] x5 + [2]
                p(c_19) = [2] x1 + [4]                  
                p(c_20) = [0]                           
                p(c_21) = [2] x1 + [1]                  
                p(c_22) = [4] x1 + [1]                  
                p(c_23) = [4] x1 + [1]                  
                p(c_24) = [0]                           
                p(c_25) = [1] x1 + [0]                  
                p(c_26) = [1] x1 + [5]                  
                p(c_27) = [0]                           
                p(c_28) = [2] x1 + [1] x2 + [2] x3 + [2]
                p(c_29) = [4]                           
                p(c_30) = [4]                           
                p(c_31) = [4]                           
                p(c_32) = [0]                           
                p(c_33) = [0]                           
        
        Following rules are strictly oriented:
        U21#(tt(),V1) = [6] V1 + [5]                                   
                      > [6] V1 + [4]                                   
                      = c_8(U22#(isNatKind(activate(V1)),activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                           
                                 >= [6] V1 + [6] V2 + [0]                                           
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U12#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                           
                                 >= [6] V1 + [6] V2 + [0]                                           
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                           
                                 >= [6] V1 + [6] V2 + [0]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                           
                                 >= [6] V1 + [6] V2 + [0]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [6] V2 + [0]                                                    
                                 >= [6] V2 + [0]                                                    
                                 =  c_6(isNat#(activate(V2)))                                       
        
                   U22#(tt(),V1) =  [6] V1 + [4]                                                    
                                 >= [6] V1 + [4]                                                    
                                 =  c_9(isNat#(activate(V1)))                                       
        
                  U61#(tt(),M,N) =  [1] M + [6] N + [6]                                             
                                 >= [1] M + [6] N + [6]                                             
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [1] M + [6] N + [1]                                             
                                 >= [6] N + [1]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [6] V1 + [6] V2 + [0]                                           
                                 >= [6] V1 + [6] V2 + [0]                                           
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                isNat#(n__s(V1)) =  [6] V1 + [12]                                                   
                                 >= [6] V1 + [10]                                                   
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
                             0() =  [1]                                                             
                                 >= [1]                                                             
                                 =  n__0()                                                          
        
                 U11(tt(),V1,V2) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U12(isNatKind(activate(V1)),activate(V1),activate(V2))          
        
                 U12(tt(),V1,V2) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U13(isNatKind(activate(V2)),activate(V1),activate(V2))          
        
                 U13(tt(),V1,V2) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U14(isNatKind(activate(V2)),activate(V1),activate(V2))          
        
                 U14(tt(),V1,V2) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U15(isNat(activate(V1)),activate(V2))                           
        
                    U15(tt(),V2) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U16(isNat(activate(V2)))                                        
        
                       U16(tt()) =  [0]                                                             
                                 >= [0]                                                             
                                 =  tt()                                                            
        
                    U21(tt(),V1) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U22(isNatKind(activate(V1)),activate(V1))                       
        
                    U22(tt(),V1) =  [0]                                                             
                                 >= [0]                                                             
                                 =  U23(isNat(activate(V1)))                                        
        
                       U23(tt()) =  [0]                                                             
                                 >= [0]                                                             
                                 =  tt()                                                            
        
                     U51(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [1]                                                             
                                 >= [1]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                           
                                 >= [1] X1 + [1] X2 + [0]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [2]                                                     
                                 >= [1] X + [2]                                                     
                                 =  s(activate(X))                                                  
        
                   isNat(n__0()) =  [1]                                                             
                                 >= [0]                                                             
                                 =  tt()                                                            
        
           isNat(n__plus(V1,V2)) =  [1]                                                             
                                 >= [0]                                                             
                                 =  U11(isNatKind(activate(V1)),activate(V1),activate(V2))          
        
                 isNat(n__s(V1)) =  [1]                                                             
                                 >= [0]                                                             
                                 =  U21(isNatKind(activate(V1)),activate(V1))                       
        
                     plus(N,0()) =  [1] N + [1]                                                     
                                 >= [1] N + [1]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                           
                                 >= [1] X1 + [1] X2 + [0]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [2]                                                     
                                 >= [1] X + [2]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:9: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [4] x2 + [0]         
                 p(U12) = [2] x1 + [7] x2 + [6]
                 p(U13) = [4] x3 + [0]         
                 p(U14) = [1] x1 + [1] x3 + [1]
                 p(U15) = [4] x1 + [4] x2 + [2]
                 p(U16) = [1] x1 + [7]         
                 p(U21) = [4] x1 + [4] x2 + [1]
                 p(U22) = [1] x1 + [4] x2 + [4]
                 p(U23) = [3] x1 + [2]         
                 p(U31) = [3]                  
                 p(U32) = [1]                  
                 p(U41) = [4] x1 + [0]         
                 p(U51) = [1] x2 + [2]         
                 p(U52) = [1] x2 + [1]         
                 p(U61) = [1] x2 + [1] x3 + [6]
                 p(U62) = [1] x2 + [1] x3 + [6]
                 p(U63) = [1] x2 + [1] x3 + [6]
                 p(U64) = [1] x2 + [1] x3 + [6]
            p(activate) = [1] x1 + [0]         
               p(isNat) = [2]                  
           p(isNatKind) = [0]                  
                p(n__0) = [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [2]
                p(n__s) = [1] x1 + [4]         
                p(plus) = [1] x1 + [1] x2 + [2]
                   p(s) = [1] x1 + [4]         
                  p(tt) = [0]                  
                  p(0#) = [1]                  
                p(U11#) = [2] x2 + [2] x3 + [4]
                p(U12#) = [2] x2 + [2] x3 + [2]
                p(U13#) = [2] x2 + [2] x3 + [2]
                p(U14#) = [2] x2 + [2] x3 + [0]
                p(U15#) = [2] x2 + [0]         
                p(U16#) = [1] x1 + [1]         
                p(U21#) = [2] x2 + [4]         
                p(U22#) = [2] x2 + [0]         
                p(U23#) = [0]                  
                p(U31#) = [1] x1 + [1] x2 + [1]
                p(U32#) = [2]                  
                p(U41#) = [4]                  
                p(U51#) = [1] x2 + [0]         
                p(U52#) = [0]                  
                p(U61#) = [1] x2 + [7] x3 + [0]
                p(U62#) = [1] x2 + [7] x3 + [0]
                p(U63#) = [0]                  
                p(U64#) = [1] x3 + [0]         
           p(activate#) = [1]                  
              p(isNat#) = [2] x1 + [0]         
          p(isNatKind#) = [1] x1 + [1]         
               p(plus#) = [4] x1 + [0]         
                  p(s#) = [4] x1 + [1]         
                 p(c_1) = [2]                  
                 p(c_2) = [1] x1 + [0]         
                 p(c_3) = [1] x1 + [0]         
                 p(c_4) = [1] x1 + [2]         
                 p(c_5) = [1] x1 + [1] x2 + [0]
                 p(c_6) = [1] x1 + [0]         
                 p(c_7) = [0]                  
                 p(c_8) = [1] x1 + [2]         
                 p(c_9) = [1] x1 + [0]         
                p(c_10) = [0]                  
                p(c_11) = [4] x1 + [2] x2 + [0]
                p(c_12) = [4]                  
                p(c_13) = [0]                  
                p(c_14) = [2]                  
                p(c_15) = [2]                  
                p(c_16) = [1] x1 + [0]         
                p(c_17) = [1] x1 + [0]         
                p(c_18) = [1] x4 + [1]         
                p(c_19) = [1] x2 + [2]         
                p(c_20) = [0]                  
                p(c_21) = [1]                  
                p(c_22) = [0]                  
                p(c_23) = [1] x1 + [1]         
                p(c_24) = [1]                  
                p(c_25) = [1] x1 + [0]         
                p(c_26) = [1] x1 + [4]         
                p(c_27) = [1]                  
                p(c_28) = [1] x3 + [1] x4 + [4]
                p(c_29) = [1] x1 + [1] x2 + [0]
                p(c_30) = [1]                  
                p(c_31) = [1] x1 + [0]         
                p(c_32) = [0]                  
                p(c_33) = [2]                  
        
        Following rules are strictly oriented:
        U11#(tt(),V1,V2) = [2] V1 + [2] V2 + [4]                                       
                         > [2] V1 + [2] V2 + [2]                                       
                         = c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [2]                                           
                                 >= [2] V1 + [2] V2 + [2]                                           
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [2]                                           
                                 >= [2] V1 + [2] V2 + [2]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [0]                                           
                                 >= [2] V1 + [2] V2 + [0]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [2] V2 + [0]                                                    
                                 >= [2] V2 + [0]                                                    
                                 =  c_6(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [2] V1 + [4]                                                    
                                 >= [2] V1 + [2]                                                    
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [2] V1 + [0]                                                    
                                 >= [2] V1 + [0]                                                    
                                 =  c_9(isNat#(activate(V1)))                                       
        
                  U61#(tt(),M,N) =  [1] M + [7] N + [0]                                             
                                 >= [1] M + [7] N + [0]                                             
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [1] M + [7] N + [0]                                             
                                 >= [2] N + [0]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [4]                                           
                                 >= [2] V1 + [2] V2 + [4]                                           
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                isNat#(n__s(V1)) =  [2] V1 + [8]                                                    
                                 >= [2] V1 + [8]                                                    
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
                             0() =  [0]                                                             
                                 >= [0]                                                             
                                 =  n__0()                                                          
        
                     U51(tt(),N) =  [1] N + [2]                                                     
                                 >= [1] N + [1]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [1]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [0]                                                             
                                 >= [0]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                           
                                 >= [1] X1 + [1] X2 + [2]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [4]                                                     
                                 >= [1] X + [4]                                                     
                                 =  s(activate(X))                                                  
        
                     plus(N,0()) =  [1] N + [2]                                                     
                                 >= [1] N + [2]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                           
                                 >= [1] X1 + [1] X2 + [2]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [4]                                                     
                                 >= [1] X + [4]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:10: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [0]                           
                 p(U12) = [4] x1 + [1] x2 + [0]         
                 p(U13) = [1] x2 + [1]                  
                 p(U14) = [1] x1 + [1] x2 + [6] x3 + [0]
                 p(U15) = [4] x1 + [4] x2 + [0]         
                 p(U16) = [0]                           
                 p(U21) = [0]                           
                 p(U22) = [1] x2 + [2]                  
                 p(U23) = [1] x1 + [5]                  
                 p(U31) = [6]                           
                 p(U32) = [2] x1 + [1]                  
                 p(U41) = [2] x1 + [0]                  
                 p(U51) = [1] x2 + [0]                  
                 p(U52) = [1] x2 + [0]                  
                 p(U61) = [1] x2 + [1] x3 + [2]         
                 p(U62) = [1] x2 + [1] x3 + [2]         
                 p(U63) = [1] x2 + [1] x3 + [2]         
                 p(U64) = [1] x2 + [1] x3 + [2]         
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [0]                           
           p(isNatKind) = [0]                           
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [0]         
                p(n__s) = [1] x1 + [2]                  
                p(plus) = [1] x1 + [1] x2 + [0]         
                   p(s) = [1] x1 + [2]                  
                  p(tt) = [0]                           
                  p(0#) = [2]                           
                p(U11#) = [1] x2 + [1] x3 + [0]         
                p(U12#) = [1] x2 + [1] x3 + [0]         
                p(U13#) = [1] x2 + [1] x3 + [0]         
                p(U14#) = [1] x2 + [1] x3 + [0]         
                p(U15#) = [1] x2 + [0]                  
                p(U16#) = [1] x1 + [1]                  
                p(U21#) = [1] x2 + [1]                  
                p(U22#) = [1] x2 + [1]                  
                p(U23#) = [4]                           
                p(U31#) = [1] x1 + [1]                  
                p(U32#) = [1] x1 + [0]                  
                p(U41#) = [0]                           
                p(U51#) = [1] x1 + [4] x2 + [0]         
                p(U52#) = [1] x1 + [1] x2 + [4]         
                p(U61#) = [2] x3 + [6]                  
                p(U62#) = [2] x3 + [2]                  
                p(U63#) = [1] x2 + [2]                  
                p(U64#) = [2] x3 + [0]                  
           p(activate#) = [1] x1 + [1]                  
              p(isNat#) = [1] x1 + [0]                  
          p(isNatKind#) = [1]                           
               p(plus#) = [1] x1 + [1] x2 + [1]         
                  p(s#) = [4] x1 + [0]                  
                 p(c_1) = [2]                           
                 p(c_2) = [1] x1 + [0]                  
                 p(c_3) = [1] x1 + [0]                  
                 p(c_4) = [1] x1 + [0]                  
                 p(c_5) = [1] x1 + [1] x2 + [0]         
                 p(c_6) = [1] x1 + [0]                  
                 p(c_7) = [1]                           
                 p(c_8) = [1] x1 + [0]                  
                 p(c_9) = [1] x1 + [0]                  
                p(c_10) = [4]                           
                p(c_11) = [1] x1 + [2] x2 + [1]         
                p(c_12) = [2]                           
                p(c_13) = [1]                           
                p(c_14) = [2] x1 + [1] x3 + [1] x4 + [0]
                p(c_15) = [1] x1 + [4]                  
                p(c_16) = [1] x1 + [3]                  
                p(c_17) = [2] x1 + [2]                  
                p(c_18) = [1] x5 + [0]                  
                p(c_19) = [1] x2 + [1]                  
                p(c_20) = [1]                           
                p(c_21) = [1]                           
                p(c_22) = [1] x1 + [0]                  
                p(c_23) = [1]                           
                p(c_24) = [4]                           
                p(c_25) = [1] x1 + [0]                  
                p(c_26) = [1] x1 + [1]                  
                p(c_27) = [2]                           
                p(c_28) = [4] x1 + [1] x3 + [1] x4 + [0]
                p(c_29) = [1] x2 + [4]                  
                p(c_30) = [1] x1 + [1]                  
                p(c_31) = [0]                           
                p(c_32) = [0]                           
                p(c_33) = [0]                           
        
        Following rules are strictly oriented:
        U22#(tt(),V1) = [1] V1 + [1]             
                      > [1] V1 + [0]             
                      = c_9(isNat#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [1] V2 + [0]                                                    
                                 >= [1] V2 + [0]                                                    
                                 =  c_6(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [1] V1 + [1]                                                    
                                 >= [1] V1 + [1]                                                    
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                  U61#(tt(),M,N) =  [2] N + [6]                                                     
                                 >= [2] N + [5]                                                     
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [2] N + [2]                                                     
                                 >= [2] N + [2]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]                                           
                                 >= [1] V1 + [1] V2 + [0]                                           
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                isNat#(n__s(V1)) =  [1] V1 + [2]                                                    
                                 >= [1] V1 + [2]                                                    
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
                             0() =  [0]                                                             
                                 >= [0]                                                             
                                 =  n__0()                                                          
        
                     U51(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [0]                                                             
                                 >= [0]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                           
                                 >= [1] X1 + [1] X2 + [0]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [2]                                                     
                                 >= [1] X + [2]                                                     
                                 =  s(activate(X))                                                  
        
                     plus(N,0()) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                           
                                 >= [1] X1 + [1] X2 + [0]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [2]                                                     
                                 >= [1] X + [2]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:11: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [5]                  
                 p(U11) = [6]                  
                 p(U12) = [2] x2 + [0]         
                 p(U13) = [4] x2 + [0]         
                 p(U14) = [2] x2 + [1] x3 + [0]
                 p(U15) = [4] x2 + [3]         
                 p(U16) = [2]                  
                 p(U21) = [0]                  
                 p(U22) = [4] x1 + [2] x2 + [4]
                 p(U23) = [0]                  
                 p(U31) = [1] x1 + [1] x2 + [4]
                 p(U32) = [2] x1 + [6]         
                 p(U41) = [1]                  
                 p(U51) = [1] x2 + [3]         
                 p(U52) = [1] x2 + [0]         
                 p(U61) = [1] x2 + [1] x3 + [6]
                 p(U62) = [1] x2 + [1] x3 + [6]
                 p(U63) = [1] x2 + [1] x3 + [6]
                 p(U64) = [1] x2 + [1] x3 + [6]
            p(activate) = [1] x1 + [0]         
               p(isNat) = [4]                  
           p(isNatKind) = [0]                  
                p(n__0) = [5]                  
             p(n__plus) = [1] x1 + [1] x2 + [4]
                p(n__s) = [1] x1 + [2]         
                p(plus) = [1] x1 + [1] x2 + [4]
                   p(s) = [1] x1 + [2]         
                  p(tt) = [0]                  
                  p(0#) = [2]                  
                p(U11#) = [2] x2 + [2] x3 + [6]
                p(U12#) = [2] x2 + [2] x3 + [6]
                p(U13#) = [2] x2 + [2] x3 + [6]
                p(U14#) = [2] x2 + [2] x3 + [6]
                p(U15#) = [2] x2 + [3]         
                p(U16#) = [1]                  
                p(U21#) = [2] x2 + [3]         
                p(U22#) = [2] x2 + [3]         
                p(U23#) = [1] x1 + [0]         
                p(U31#) = [4] x1 + [1]         
                p(U32#) = [1] x1 + [1]         
                p(U41#) = [1] x1 + [0]         
                p(U51#) = [4]                  
                p(U52#) = [1]                  
                p(U61#) = [4] x2 + [4] x3 + [7]
                p(U62#) = [4] x3 + [3]         
                p(U63#) = [2] x2 + [4] x3 + [1]
                p(U64#) = [2] x2 + [2]         
           p(activate#) = [1]                  
              p(isNat#) = [2] x1 + [3]         
          p(isNatKind#) = [2]                  
               p(plus#) = [4] x1 + [1]         
                  p(s#) = [1] x1 + [0]         
                 p(c_1) = [0]                  
                 p(c_2) = [1] x1 + [0]         
                 p(c_3) = [1] x1 + [0]         
                 p(c_4) = [1] x1 + [0]         
                 p(c_5) = [1] x1 + [1] x2 + [0]
                 p(c_6) = [1] x1 + [0]         
                 p(c_7) = [1]                  
                 p(c_8) = [1] x1 + [0]         
                 p(c_9) = [1] x1 + [0]         
                p(c_10) = [1]                  
                p(c_11) = [2] x1 + [1]         
                p(c_12) = [0]                  
                p(c_13) = [2]                  
                p(c_14) = [2] x4 + [0]         
                p(c_15) = [2] x1 + [4]         
                p(c_16) = [1] x1 + [4]         
                p(c_17) = [1] x1 + [0]         
                p(c_18) = [1] x3 + [1] x4 + [0]
                p(c_19) = [2]                  
                p(c_20) = [4]                  
                p(c_21) = [0]                  
                p(c_22) = [2] x1 + [0]         
                p(c_23) = [1] x1 + [0]         
                p(c_24) = [1]                  
                p(c_25) = [1] x1 + [4]         
                p(c_26) = [1] x1 + [1]         
                p(c_27) = [1]                  
                p(c_28) = [1] x1 + [0]         
                p(c_29) = [1] x1 + [1] x2 + [4]
                p(c_30) = [0]                  
                p(c_31) = [2] x1 + [1] x2 + [0]
                p(c_32) = [2]                  
                p(c_33) = [1]                  
        
        Following rules are strictly oriented:
        isNat#(n__plus(V1,V2)) = [2] V1 + [2] V2 + [11]                                       
                               > [2] V1 + [2] V2 + [10]                                       
                               = c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [2] V1 + [2] V2 + [6]                                           
                                 >= [2] V1 + [2] V2 + [6]                                           
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [6]                                           
                                 >= [2] V1 + [2] V2 + [6]                                           
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [6]                                           
                                 >= [2] V1 + [2] V2 + [6]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [6]                                           
                                 >= [2] V1 + [2] V2 + [6]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [2] V2 + [3]                                                    
                                 >= [2] V2 + [3]                                                    
                                 =  c_6(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [2] V1 + [3]                                                    
                                 >= [2] V1 + [3]                                                    
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [2] V1 + [3]                                                    
                                 >= [2] V1 + [3]                                                    
                                 =  c_9(isNat#(activate(V1)))                                       
        
                  U61#(tt(),M,N) =  [4] M + [4] N + [7]                                             
                                 >= [4] N + [7]                                                     
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [4] N + [3]                                                     
                                 >= [2] N + [3]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
                isNat#(n__s(V1)) =  [2] V1 + [7]                                                    
                                 >= [2] V1 + [4]                                                    
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
                             0() =  [5]                                                             
                                 >= [5]                                                             
                                 =  n__0()                                                          
        
                     U51(tt(),N) =  [1] N + [3]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [5]                                                             
                                 >= [5]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [4]                                           
                                 >= [1] X1 + [1] X2 + [4]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [2]                                                     
                                 >= [1] X + [2]                                                     
                                 =  s(activate(X))                                                  
        
                     plus(N,0()) =  [1] N + [9]                                                     
                                 >= [1] N + [3]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [6]                                             
                                 >= [1] M + [1] N + [6]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [4]                                           
                                 >= [1] X1 + [1] X2 + [4]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [2]                                                     
                                 >= [1] X + [2]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:12: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                 p(U11) = [1] x1 + [4] x2 + [1] x3 + [2]         
                 p(U12) = [1] x2 + [2] x3 + [0]                  
                 p(U13) = [1] x1 + [7]                           
                 p(U14) = [2] x3 + [4]                           
                 p(U15) = [1] x1 + [1] x2 + [4]                  
                 p(U16) = [4] x1 + [4]                           
                 p(U21) = [2] x1 + [2] x2 + [4]                  
                 p(U22) = [2] x1 + [3]                           
                 p(U23) = [4] x1 + [3]                           
                 p(U31) = [1] x1 + [5]                           
                 p(U32) = [0]                                    
                 p(U41) = [4] x1 + [0]                           
                 p(U51) = [1] x2 + [0]                           
                 p(U52) = [1] x2 + [0]                           
                 p(U61) = [1] x2 + [1] x3 + [3]                  
                 p(U62) = [1] x2 + [1] x3 + [3]                  
                 p(U63) = [1] x2 + [1] x3 + [3]                  
                 p(U64) = [1] x2 + [1] x3 + [3]                  
            p(activate) = [1] x1 + [0]                           
               p(isNat) = [2] x1 + [0]                           
           p(isNatKind) = [0]                                    
                p(n__0) = [0]                                    
             p(n__plus) = [1] x1 + [1] x2 + [2]                  
                p(n__s) = [1] x1 + [1]                           
                p(plus) = [1] x1 + [1] x2 + [2]                  
                   p(s) = [1] x1 + [1]                           
                  p(tt) = [0]                                    
                  p(0#) = [0]                                    
                p(U11#) = [2] x2 + [2] x3 + [2]                  
                p(U12#) = [2] x2 + [2] x3 + [2]                  
                p(U13#) = [2] x2 + [2] x3 + [2]                  
                p(U14#) = [2] x2 + [2] x3 + [2]                  
                p(U15#) = [2] x2 + [1]                           
                p(U16#) = [2]                                    
                p(U21#) = [2] x2 + [2]                           
                p(U22#) = [2] x2 + [2]                           
                p(U23#) = [1]                                    
                p(U31#) = [1] x1 + [1] x2 + [0]                  
                p(U32#) = [4] x1 + [1]                           
                p(U41#) = [2]                                    
                p(U51#) = [1] x1 + [1]                           
                p(U52#) = [1] x2 + [0]                           
                p(U61#) = [1] x2 + [4] x3 + [5]                  
                p(U62#) = [4] x3 + [1]                           
                p(U63#) = [1] x1 + [1]                           
                p(U64#) = [2] x1 + [1] x2 + [0]                  
           p(activate#) = [2] x1 + [0]                           
              p(isNat#) = [2] x1 + [0]                           
          p(isNatKind#) = [2]                                    
               p(plus#) = [1]                                    
                  p(s#) = [1] x1 + [4]                           
                 p(c_1) = [0]                                    
                 p(c_2) = [1] x1 + [0]                           
                 p(c_3) = [1] x1 + [0]                           
                 p(c_4) = [1] x1 + [0]                           
                 p(c_5) = [1] x1 + [1] x2 + [1]                  
                 p(c_6) = [1] x1 + [0]                           
                 p(c_7) = [2]                                    
                 p(c_8) = [1] x1 + [0]                           
                 p(c_9) = [1] x1 + [0]                           
                p(c_10) = [0]                                    
                p(c_11) = [1] x1 + [2]                           
                p(c_12) = [0]                                    
                p(c_13) = [1]                                    
                p(c_14) = [1] x2 + [1] x3 + [2]                  
                p(c_15) = [0]                                    
                p(c_16) = [1] x1 + [0]                           
                p(c_17) = [2] x1 + [0]                           
                p(c_18) = [2] x1 + [0]                           
                p(c_19) = [1] x1 + [0]                           
                p(c_20) = [1]                                    
                p(c_21) = [1]                                    
                p(c_22) = [4] x1 + [2] x2 + [1]                  
                p(c_23) = [1] x1 + [1]                           
                p(c_24) = [4]                                    
                p(c_25) = [1] x1 + [2]                           
                p(c_26) = [1] x1 + [0]                           
                p(c_27) = [1]                                    
                p(c_28) = [1] x1 + [2] x2 + [1] x3 + [1] x4 + [0]
                p(c_29) = [1]                                    
                p(c_30) = [2] x2 + [0]                           
                p(c_31) = [1]                                    
                p(c_32) = [0]                                    
                p(c_33) = [1]                                    
        
        Following rules are strictly oriented:
        U15#(tt(),V2) = [2] V2 + [1]             
                      > [2] V2 + [0]             
                      = c_6(isNat#(activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [2] V1 + [2] V2 + [2]                                           
                                 >= [2] V1 + [2] V2 + [2]                                           
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [2]                                           
                                 >= [2] V1 + [2] V2 + [2]                                           
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [2]                                           
                                 >= [2] V1 + [2] V2 + [2]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [2]                                           
                                 >= [2] V1 + [2] V2 + [2]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U21#(tt(),V1) =  [2] V1 + [2]                                                    
                                 >= [2] V1 + [2]                                                    
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [2] V1 + [2]                                                    
                                 >= [2] V1 + [0]                                                    
                                 =  c_9(isNat#(activate(V1)))                                       
        
                  U61#(tt(),M,N) =  [1] M + [4] N + [5]                                             
                                 >= [4] N + [1]                                                     
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [4] N + [1]                                                     
                                 >= [4] N + [0]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [4]                                           
                                 >= [2] V1 + [2] V2 + [4]                                           
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                isNat#(n__s(V1)) =  [2] V1 + [2]                                                    
                                 >= [2] V1 + [2]                                                    
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
                             0() =  [0]                                                             
                                 >= [0]                                                             
                                 =  n__0()                                                          
        
                     U51(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [0]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [3]                                             
                                 >= [1] M + [1] N + [3]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [3]                                             
                                 >= [1] M + [1] N + [3]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [3]                                             
                                 >= [1] M + [1] N + [3]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [3]                                             
                                 >= [1] M + [1] N + [3]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [0]                                                             
                                 >= [0]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                           
                                 >= [1] X1 + [1] X2 + [2]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [1]                                                     
                                 >= [1] X + [1]                                                     
                                 =  s(activate(X))                                                  
        
                     plus(N,0()) =  [1] N + [2]                                                     
                                 >= [1] N + [0]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [3]                                             
                                 >= [1] M + [1] N + [3]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                           
                                 >= [1] X1 + [1] X2 + [2]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [1]                                                     
                                 >= [1] X + [1]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:13: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [1] x1 + [1] x2 + [4] x3 + [0]
                 p(U12) = [1] x2 + [1] x3 + [0]         
                 p(U13) = [2] x2 + [1] x3 + [0]         
                 p(U14) = [0]                           
                 p(U15) = [4] x1 + [0]                  
                 p(U16) = [1] x1 + [7]                  
                 p(U21) = [4] x1 + [4] x2 + [0]         
                 p(U22) = [2] x1 + [5]                  
                 p(U23) = [5] x1 + [0]                  
                 p(U31) = [6] x2 + [0]                  
                 p(U32) = [1] x1 + [6]                  
                 p(U41) = [1]                           
                 p(U51) = [1] x2 + [2]                  
                 p(U52) = [1] x2 + [2]                  
                 p(U61) = [1] x2 + [1] x3 + [3]         
                 p(U62) = [1] x2 + [1] x3 + [3]         
                 p(U63) = [1] x2 + [1] x3 + [3]         
                 p(U64) = [1] x2 + [1] x3 + [3]         
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1] x1 + [3]                  
           p(isNatKind) = [0]                           
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [2]         
                p(n__s) = [1] x1 + [1]                  
                p(plus) = [1] x1 + [1] x2 + [2]         
                   p(s) = [1] x1 + [1]                  
                  p(tt) = [0]                           
                  p(0#) = [1]                           
                p(U11#) = [4] x2 + [4] x3 + [6]         
                p(U12#) = [4] x2 + [4] x3 + [6]         
                p(U13#) = [4] x2 + [4] x3 + [6]         
                p(U14#) = [4] x2 + [4] x3 + [4]         
                p(U15#) = [4] x2 + [2]                  
                p(U16#) = [1] x1 + [0]                  
                p(U21#) = [4] x2 + [1]                  
                p(U22#) = [4] x2 + [1]                  
                p(U23#) = [1]                           
                p(U31#) = [4] x1 + [1]                  
                p(U32#) = [0]                           
                p(U41#) = [1] x1 + [1]                  
                p(U51#) = [2] x1 + [0]                  
                p(U52#) = [1] x1 + [1] x2 + [4]         
                p(U61#) = [1] x1 + [4] x3 + [0]         
                p(U62#) = [4] x3 + [0]                  
                p(U63#) = [4] x1 + [1]                  
                p(U64#) = [1] x3 + [1]                  
           p(activate#) = [1]                           
              p(isNat#) = [4] x1 + [0]                  
          p(isNatKind#) = [1]                           
               p(plus#) = [4] x1 + [1] x2 + [1]         
                  p(s#) = [0]                           
                 p(c_1) = [0]                           
                 p(c_2) = [1] x1 + [0]                  
                 p(c_3) = [1] x1 + [0]                  
                 p(c_4) = [1] x1 + [0]                  
                 p(c_5) = [1] x1 + [1] x2 + [0]         
                 p(c_6) = [1] x1 + [0]                  
                 p(c_7) = [4]                           
                 p(c_8) = [1] x1 + [0]                  
                 p(c_9) = [1] x1 + [1]                  
                p(c_10) = [1]                           
                p(c_11) = [1]                           
                p(c_12) = [0]                           
                p(c_13) = [4]                           
                p(c_14) = [1] x2 + [4] x3 + [4] x4 + [0]
                p(c_15) = [1] x1 + [1]                  
                p(c_16) = [1] x1 + [0]                  
                p(c_17) = [1] x1 + [0]                  
                p(c_18) = [1] x3 + [1] x4 + [1] x5 + [1]
                p(c_19) = [4] x1 + [1]                  
                p(c_20) = [0]                           
                p(c_21) = [4] x1 + [1]                  
                p(c_22) = [1] x1 + [1]                  
                p(c_23) = [1] x1 + [4]                  
                p(c_24) = [1]                           
                p(c_25) = [1] x1 + [2]                  
                p(c_26) = [1] x1 + [0]                  
                p(c_27) = [0]                           
                p(c_28) = [2] x3 + [1] x4 + [1]         
                p(c_29) = [2] x1 + [2]                  
                p(c_30) = [2] x2 + [0]                  
                p(c_31) = [2]                           
                p(c_32) = [1]                           
                p(c_33) = [1]                           
        
        Following rules are strictly oriented:
        U13#(tt(),V1,V2) = [4] V1 + [4] V2 + [6]                                           
                         > [4] V1 + [4] V2 + [4]                                           
                         = c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
        U14#(tt(),V1,V2) = [4] V1 + [4] V2 + [4]                                           
                         > [4] V1 + [4] V2 + [2]                                           
                         = c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [6]                                        
                                 >= [4] V1 + [4] V2 + [6]                                        
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))) 
        
                U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [6]                                        
                                 >= [4] V1 + [4] V2 + [6]                                        
                                 =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))) 
        
                   U15#(tt(),V2) =  [4] V2 + [2]                                                 
                                 >= [4] V2 + [0]                                                 
                                 =  c_6(isNat#(activate(V2)))                                    
        
                   U21#(tt(),V1) =  [4] V1 + [1]                                                 
                                 >= [4] V1 + [1]                                                 
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))              
        
                   U22#(tt(),V1) =  [4] V1 + [1]                                                 
                                 >= [4] V1 + [1]                                                 
                                 =  c_9(isNat#(activate(V1)))                                    
        
                  U61#(tt(),M,N) =  [4] N + [0]                                                  
                                 >= [4] N + [0]                                                  
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))   
        
                  U62#(tt(),M,N) =  [4] N + [0]                                                  
                                 >= [4] N + [0]                                                  
                                 =  c_17(isNat#(activate(N)))                                    
        
          isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                        
                                 >= [4] V1 + [4] V2 + [8]                                        
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        
                isNat#(n__s(V1)) =  [4] V1 + [4]                                                 
                                 >= [4] V1 + [1]                                                 
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))             
        
                             0() =  [0]                                                          
                                 >= [0]                                                          
                                 =  n__0()                                                       
        
                     U51(tt(),N) =  [1] N + [2]                                                  
                                 >= [1] N + [2]                                                  
                                 =  U52(isNatKind(activate(N)),activate(N))                      
        
                     U52(tt(),N) =  [1] N + [2]                                                  
                                 >= [1] N + [0]                                                  
                                 =  activate(N)                                                  
        
                   U61(tt(),M,N) =  [1] M + [1] N + [3]                                          
                                 >= [1] M + [1] N + [3]                                          
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))          
        
                   U62(tt(),M,N) =  [1] M + [1] N + [3]                                          
                                 >= [1] M + [1] N + [3]                                          
                                 =  U63(isNat(activate(N)),activate(M),activate(N))              
        
                   U63(tt(),M,N) =  [1] M + [1] N + [3]                                          
                                 >= [1] M + [1] N + [3]                                          
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))          
        
                   U64(tt(),M,N) =  [1] M + [1] N + [3]                                          
                                 >= [1] M + [1] N + [3]                                          
                                 =  s(plus(activate(N),activate(M)))                             
        
                     activate(X) =  [1] X + [0]                                                  
                                 >= [1] X + [0]                                                  
                                 =  X                                                            
        
                activate(n__0()) =  [0]                                                          
                                 >= [0]                                                          
                                 =  0()                                                          
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                        
                                 >= [1] X1 + [1] X2 + [2]                                        
                                 =  plus(activate(X1),activate(X2))                              
        
               activate(n__s(X)) =  [1] X + [1]                                                  
                                 >= [1] X + [1]                                                  
                                 =  s(activate(X))                                               
        
                     plus(N,0()) =  [1] N + [2]                                                  
                                 >= [1] N + [2]                                                  
                                 =  U51(isNat(N),N)                                              
        
                    plus(N,s(M)) =  [1] M + [1] N + [3]                                          
                                 >= [1] M + [1] N + [3]                                          
                                 =  U61(isNat(M),M,N)                                            
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                        
                                 >= [1] X1 + [1] X2 + [2]                                        
                                 =  n__plus(X1,X2)                                               
        
                            s(X) =  [1] X + [1]                                                  
                                 >= [1] X + [1]                                                  
                                 =  n__s(X)                                                      
        
** Step 6.a:14: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_25) = {1},
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [1]                           
                 p(U11) = [3] x3 + [4]                  
                 p(U12) = [4] x1 + [1] x2 + [1] x3 + [0]
                 p(U13) = [2] x2 + [1] x3 + [3]         
                 p(U14) = [2] x3 + [0]                  
                 p(U15) = [2] x2 + [4]                  
                 p(U16) = [2]                           
                 p(U21) = [0]                           
                 p(U22) = [2] x1 + [1]                  
                 p(U23) = [5]                           
                 p(U31) = [2]                           
                 p(U32) = [0]                           
                 p(U41) = [0]                           
                 p(U51) = [1] x2 + [2]                  
                 p(U52) = [1] x2 + [2]                  
                 p(U61) = [1] x2 + [1] x3 + [2]         
                 p(U62) = [1] x2 + [1] x3 + [2]         
                 p(U63) = [1] x2 + [1] x3 + [2]         
                 p(U64) = [1] x2 + [1] x3 + [2]         
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [0]                           
           p(isNatKind) = [0]                           
                p(n__0) = [1]                           
             p(n__plus) = [1] x1 + [1] x2 + [2]         
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [1] x1 + [1] x2 + [2]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [0]                           
                  p(0#) = [4]                           
                p(U11#) = [4] x2 + [4] x3 + [1]         
                p(U12#) = [4] x2 + [4] x3 + [1]         
                p(U13#) = [4] x2 + [4] x3 + [0]         
                p(U14#) = [4] x2 + [4] x3 + [0]         
                p(U15#) = [4] x2 + [0]                  
                p(U16#) = [1] x1 + [0]                  
                p(U21#) = [4] x2 + [0]                  
                p(U22#) = [4] x2 + [0]                  
                p(U23#) = [0]                           
                p(U31#) = [1] x2 + [4]                  
                p(U32#) = [4]                           
                p(U41#) = [4]                           
                p(U51#) = [1] x2 + [1]                  
                p(U52#) = [0]                           
                p(U61#) = [4] x2 + [4] x3 + [5]         
                p(U62#) = [2] x2 + [4] x3 + [3]         
                p(U63#) = [1] x2 + [1]                  
                p(U64#) = [1] x3 + [1]                  
           p(activate#) = [4] x1 + [1]                  
              p(isNat#) = [4] x1 + [0]                  
          p(isNatKind#) = [1]                           
               p(plus#) = [0]                           
                  p(s#) = [1]                           
                 p(c_1) = [2]                           
                 p(c_2) = [1] x1 + [0]                  
                 p(c_3) = [1] x1 + [0]                  
                 p(c_4) = [1] x1 + [0]                  
                 p(c_5) = [1] x1 + [1] x2 + [0]         
                 p(c_6) = [1] x1 + [0]                  
                 p(c_7) = [0]                           
                 p(c_8) = [1] x1 + [0]                  
                 p(c_9) = [1] x1 + [0]                  
                p(c_10) = [1]                           
                p(c_11) = [2]                           
                p(c_12) = [0]                           
                p(c_13) = [0]                           
                p(c_14) = [2] x1 + [1] x4 + [1]         
                p(c_15) = [0]                           
                p(c_16) = [1] x1 + [1]                  
                p(c_17) = [1] x1 + [3]                  
                p(c_18) = [1] x1 + [4]                  
                p(c_19) = [1] x1 + [1] x2 + [0]         
                p(c_20) = [1]                           
                p(c_21) = [0]                           
                p(c_22) = [2]                           
                p(c_23) = [4]                           
                p(c_24) = [2]                           
                p(c_25) = [1] x1 + [7]                  
                p(c_26) = [1] x1 + [0]                  
                p(c_27) = [0]                           
                p(c_28) = [1]                           
                p(c_29) = [1]                           
                p(c_30) = [0]                           
                p(c_31) = [2] x1 + [4]                  
                p(c_32) = [1]                           
                p(c_33) = [4]                           
        
        Following rules are strictly oriented:
        U12#(tt(),V1,V2) = [4] V1 + [4] V2 + [1]                                       
                         > [4] V1 + [4] V2 + [0]                                       
                         = c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [1]                                           
                                 >= [4] V1 + [4] V2 + [1]                                           
                                 =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                           
                                 >= [4] V1 + [4] V2 + [0]                                           
                                 =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                           
                                 >= [4] V1 + [4] V2 + [0]                                           
                                 =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [4] V2 + [0]                                                    
                                 >= [4] V2 + [0]                                                    
                                 =  c_6(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [4] V1 + [0]                                                    
                                 >= [4] V1 + [0]                                                    
                                 =  c_8(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [4] V1 + [0]                                                    
                                 >= [4] V1 + [0]                                                    
                                 =  c_9(isNat#(activate(V1)))                                       
        
                  U61#(tt(),M,N) =  [4] M + [4] N + [5]                                             
                                 >= [2] M + [4] N + [4]                                             
                                 =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U62#(tt(),M,N) =  [2] M + [4] N + [3]                                             
                                 >= [4] N + [3]                                                     
                                 =  c_17(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                           
                                 >= [4] V1 + [4] V2 + [8]                                           
                                 =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                isNat#(n__s(V1)) =  [4] V1 + [0]                                                    
                                 >= [4] V1 + [0]                                                    
                                 =  c_26(U21#(isNatKind(activate(V1)),activate(V1)))                
        
                             0() =  [1]                                                             
                                 >= [1]                                                             
                                 =  n__0()                                                          
        
                     U51(tt(),N) =  [1] N + [2]                                                     
                                 >= [1] N + [2]                                                     
                                 =  U52(isNatKind(activate(N)),activate(N))                         
        
                     U52(tt(),N) =  [1] N + [2]                                                     
                                 >= [1] N + [0]                                                     
                                 =  activate(N)                                                     
        
                   U61(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))             
        
                   U62(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U63(isNat(activate(N)),activate(M),activate(N))                 
        
                   U63(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))             
        
                   U64(tt(),M,N) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  s(plus(activate(N),activate(M)))                                
        
                     activate(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  X                                                               
        
                activate(n__0()) =  [1]                                                             
                                 >= [1]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                           
                                 >= [1] X1 + [1] X2 + [2]                                           
                                 =  plus(activate(X1),activate(X2))                                 
        
               activate(n__s(X)) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  s(activate(X))                                                  
        
                     plus(N,0()) =  [1] N + [3]                                                     
                                 >= [1] N + [2]                                                     
                                 =  U51(isNat(N),N)                                                 
        
                    plus(N,s(M)) =  [1] M + [1] N + [2]                                             
                                 >= [1] M + [1] N + [2]                                             
                                 =  U61(isNat(M),M,N)                                               
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                           
                                 >= [1] X1 + [1] X2 + [2]                                           
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1] X + [0]                                                     
                                 >= [1] X + [0]                                                     
                                 =  n__s(X)                                                         
        
** Step 6.a:15: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)))
            U62#(tt(),M,N) -> c_17(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1,c_7/0,c_8/1
            ,c_9/1,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/1,c_17/1,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/1,c_26/1,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(activate#(X))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> activate#(N)
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> activate#(M)
            U61#(tt(),M,N) -> activate#(N)
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
          U11#(tt(),V1,V2) -> activate#(V1)
          U11#(tt(),V1,V2) -> activate#(V2)
          U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
          U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U12#(tt(),V1,V2) -> activate#(V1)
          U12#(tt(),V1,V2) -> activate#(V2)
          U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13#(tt(),V1,V2) -> activate#(V1)
          U13#(tt(),V1,V2) -> activate#(V2)
          U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
          U14#(tt(),V1,V2) -> activate#(V1)
          U14#(tt(),V1,V2) -> activate#(V2)
          U14#(tt(),V1,V2) -> isNat#(activate(V1))
          U15#(tt(),V2) -> activate#(V2)
          U15#(tt(),V2) -> isNat#(activate(V2))
          U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
          U21#(tt(),V1) -> activate#(V1)
          U21#(tt(),V1) -> isNatKind#(activate(V1))
          U22#(tt(),V1) -> activate#(V1)
          U22#(tt(),V1) -> isNat#(activate(V1))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
          U51#(tt(),N) -> activate#(N)
          U51#(tt(),N) -> isNatKind#(activate(N))
          U52#(tt(),N) -> activate#(N)
          U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
          U61#(tt(),M,N) -> activate#(M)
          U61#(tt(),M,N) -> activate#(N)
          U61#(tt(),M,N) -> isNatKind#(activate(M))
          U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
          U62#(tt(),M,N) -> activate#(M)
          U62#(tt(),M,N) -> activate#(N)
          U62#(tt(),M,N) -> isNat#(activate(N))
          U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
          U63#(tt(),M,N) -> activate#(M)
          U63#(tt(),M,N) -> activate#(N)
          U63#(tt(),M,N) -> isNatKind#(activate(N))
          U64#(tt(),M,N) -> activate#(M)
          U64#(tt(),M,N) -> activate#(N)
          isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat#(n__plus(V1,V2)) -> activate#(V1)
          isNat#(n__plus(V1,V2)) -> activate#(V2)
          isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
          isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
          isNat#(n__s(V1)) -> activate#(V1)
          isNat#(n__s(V1)) -> isNatKind#(activate(V1))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        and a lower component
          activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_23(activate#(X))
        Further, following extension rules are added to the lower component.
          U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
          U11#(tt(),V1,V2) -> activate#(V1)
          U11#(tt(),V1,V2) -> activate#(V2)
          U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
          U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U12#(tt(),V1,V2) -> activate#(V1)
          U12#(tt(),V1,V2) -> activate#(V2)
          U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13#(tt(),V1,V2) -> activate#(V1)
          U13#(tt(),V1,V2) -> activate#(V2)
          U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
          U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
          U14#(tt(),V1,V2) -> activate#(V1)
          U14#(tt(),V1,V2) -> activate#(V2)
          U14#(tt(),V1,V2) -> isNat#(activate(V1))
          U15#(tt(),V2) -> activate#(V2)
          U15#(tt(),V2) -> isNat#(activate(V2))
          U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
          U21#(tt(),V1) -> activate#(V1)
          U21#(tt(),V1) -> isNatKind#(activate(V1))
          U22#(tt(),V1) -> activate#(V1)
          U22#(tt(),V1) -> isNat#(activate(V1))
          U31#(tt(),V2) -> activate#(V2)
          U31#(tt(),V2) -> isNatKind#(activate(V2))
          U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
          U51#(tt(),N) -> activate#(N)
          U51#(tt(),N) -> isNatKind#(activate(N))
          U52#(tt(),N) -> activate#(N)
          U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
          U61#(tt(),M,N) -> activate#(M)
          U61#(tt(),M,N) -> activate#(N)
          U61#(tt(),M,N) -> isNatKind#(activate(M))
          U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
          U62#(tt(),M,N) -> activate#(M)
          U62#(tt(),M,N) -> activate#(N)
          U62#(tt(),M,N) -> isNat#(activate(N))
          U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
          U63#(tt(),M,N) -> activate#(M)
          U63#(tt(),M,N) -> activate#(N)
          U63#(tt(),M,N) -> isNatKind#(activate(N))
          U64#(tt(),M,N) -> activate#(M)
          U64#(tt(),M,N) -> activate#(N)
          isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat#(n__plus(V1,V2)) -> activate#(V1)
          isNat#(n__plus(V1,V2)) -> activate#(V2)
          isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
          isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
          isNat#(n__s(V1)) -> activate#(V1)
          isNat#(n__s(V1)) -> isNatKind#(activate(V1))
          isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
          isNatKind#(n__plus(V1,V2)) -> activate#(V1)
          isNatKind#(n__plus(V1,V2)) -> activate#(V2)
          isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
          isNatKind#(n__s(V1)) -> activate#(V1)
          isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
*** Step 6.b:1.a:1: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U15#(tt(),V2) -> activate#(V2)
            U21#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> activate#(V1)
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> activate#(N)
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> activate#(M)
            U61#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {13,15,16}
        by application of
          Pre({13,15,16}) = {}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> activate#(V1)
          2: U11#(tt(),V1,V2) -> activate#(V2)
          3: U12#(tt(),V1,V2) -> activate#(V1)
          4: U12#(tt(),V1,V2) -> activate#(V2)
          5: U13#(tt(),V1,V2) -> activate#(V1)
          6: U13#(tt(),V1,V2) -> activate#(V2)
          7: U14#(tt(),V1,V2) -> activate#(V1)
          8: U14#(tt(),V1,V2) -> activate#(V2)
          9: U15#(tt(),V2) -> activate#(V2)
          10: U21#(tt(),V1) -> activate#(V1)
          11: U22#(tt(),V1) -> activate#(V1)
          12: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
          13: U51#(tt(),N) -> activate#(N)
          14: U52#(tt(),N) -> activate#(N)
          15: U61#(tt(),M,N) -> activate#(M)
          16: U61#(tt(),M,N) -> activate#(N)
          17: U62#(tt(),M,N) -> activate#(M)
          18: U62#(tt(),M,N) -> activate#(N)
          19: U63#(tt(),M,N) -> activate#(M)
          20: U63#(tt(),M,N) -> activate#(N)
          21: U64#(tt(),M,N) -> activate#(M)
          22: U64#(tt(),M,N) -> activate#(N)
          23: isNat#(n__plus(V1,V2)) -> activate#(V1)
          24: isNat#(n__plus(V1,V2)) -> activate#(V2)
          25: isNat#(n__s(V1)) -> activate#(V1)
          26: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          27: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
          28: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
          29: U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
          30: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
          31: U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
          32: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
          33: U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
          34: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
          35: U14#(tt(),V1,V2) -> isNat#(activate(V1))
          36: U15#(tt(),V2) -> isNat#(activate(V2))
          37: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
          38: U21#(tt(),V1) -> isNatKind#(activate(V1))
          39: U22#(tt(),V1) -> isNat#(activate(V1))
          40: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
          41: U51#(tt(),N) -> isNatKind#(activate(N))
          42: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
          43: U61#(tt(),M,N) -> isNatKind#(activate(M))
          44: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
          45: U62#(tt(),M,N) -> isNat#(activate(N))
          46: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
          47: U63#(tt(),M,N) -> isNatKind#(activate(N))
          48: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
          49: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
          50: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
          51: isNat#(n__s(V1)) -> isNatKind#(activate(V1))
*** Step 6.b:1.a:2: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U15#(tt(),V2) -> activate#(V2)
            U21#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> activate#(V1)
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            U52#(tt(),N) -> activate#(N)
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> activate#(N)
            U51#(tt(),N) -> isNatKind#(activate(N))
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> activate#(M)
            U61#(tt(),M,N) -> activate#(N)
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> activate#(V1)
             
          
          2:S:U11#(tt(),V1,V2) -> activate#(V2)
             
          
          3:S:U12#(tt(),V1,V2) -> activate#(V1)
             
          
          4:S:U12#(tt(),V1,V2) -> activate#(V2)
             
          
          5:S:U13#(tt(),V1,V2) -> activate#(V1)
             
          
          6:S:U13#(tt(),V1,V2) -> activate#(V2)
             
          
          7:S:U14#(tt(),V1,V2) -> activate#(V1)
             
          
          8:S:U14#(tt(),V1,V2) -> activate#(V2)
             
          
          9:S:U15#(tt(),V2) -> activate#(V2)
             
          
          10:S:U21#(tt(),V1) -> activate#(V1)
             
          
          11:S:U22#(tt(),V1) -> activate#(V1)
             
          
          12:S:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          13:S:U52#(tt(),N) -> activate#(N)
             
          
          14:S:U62#(tt(),M,N) -> activate#(M)
             
          
          15:S:U62#(tt(),M,N) -> activate#(N)
             
          
          16:S:U63#(tt(),M,N) -> activate#(M)
             
          
          17:S:U63#(tt(),M,N) -> activate#(N)
             
          
          18:S:U64#(tt(),M,N) -> activate#(M)
             
          
          19:S:U64#(tt(),M,N) -> activate#(N)
             
          
          20:S:isNat#(n__plus(V1,V2)) -> activate#(V1)
             
          
          21:S:isNat#(n__plus(V1,V2)) -> activate#(V2)
             
          
          22:S:isNat#(n__s(V1)) -> activate#(V1)
             
          
          23:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
             -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2)):12
          
          24:S:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          25:W:U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
             -->_1 U12#(tt(),V1,V2) -> isNatKind#(activate(V2)):28
             -->_1 U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)):27
             -->_1 U12#(tt(),V1,V2) -> activate#(V2):4
             -->_1 U12#(tt(),V1,V2) -> activate#(V1):3
          
          26:W:U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          27:W:U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
             -->_1 U13#(tt(),V1,V2) -> isNatKind#(activate(V2)):30
             -->_1 U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)):29
             -->_1 U13#(tt(),V1,V2) -> activate#(V2):6
             -->_1 U13#(tt(),V1,V2) -> activate#(V1):5
          
          28:W:U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          29:W:U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
             -->_1 U14#(tt(),V1,V2) -> isNat#(activate(V1)):32
             -->_1 U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)):31
             -->_1 U14#(tt(),V1,V2) -> activate#(V2):8
             -->_1 U14#(tt(),V1,V2) -> activate#(V1):7
          
          30:W:U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          31:W:U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
             -->_1 U15#(tt(),V2) -> isNat#(activate(V2)):33
             -->_1 U15#(tt(),V2) -> activate#(V2):9
          
          32:W:U14#(tt(),V1,V2) -> isNat#(activate(V1))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          33:W:U15#(tt(),V2) -> isNat#(activate(V2))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          34:W:U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
             -->_1 U22#(tt(),V1) -> isNat#(activate(V1)):36
             -->_1 U22#(tt(),V1) -> activate#(V1):11
          
          35:W:U21#(tt(),V1) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          36:W:U22#(tt(),V1) -> isNat#(activate(V1))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          37:W:U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
             -->_1 U52#(tt(),N) -> activate#(N):13
          
          38:W:U51#(tt(),N) -> activate#(N)
             
          
          39:W:U51#(tt(),N) -> isNatKind#(activate(N))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          40:W:U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
             -->_1 U62#(tt(),M,N) -> isNat#(activate(N)):45
             -->_1 U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)):44
             -->_1 U62#(tt(),M,N) -> activate#(N):15
             -->_1 U62#(tt(),M,N) -> activate#(M):14
          
          41:W:U61#(tt(),M,N) -> activate#(M)
             
          
          42:W:U61#(tt(),M,N) -> activate#(N)
             
          
          43:W:U61#(tt(),M,N) -> isNatKind#(activate(M))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          44:W:U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
             -->_1 U63#(tt(),M,N) -> isNatKind#(activate(N)):47
             -->_1 U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)):46
             -->_1 U63#(tt(),M,N) -> activate#(N):17
             -->_1 U63#(tt(),M,N) -> activate#(M):16
          
          45:W:U62#(tt(),M,N) -> isNat#(activate(N))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          46:W:U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
             -->_1 U64#(tt(),M,N) -> activate#(N):19
             -->_1 U64#(tt(),M,N) -> activate#(M):18
          
          47:W:U63#(tt(),M,N) -> isNatKind#(activate(N))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          48:W:isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
             -->_1 U11#(tt(),V1,V2) -> isNatKind#(activate(V1)):26
             -->_1 U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)):25
             -->_1 U11#(tt(),V1,V2) -> activate#(V2):2
             -->_1 U11#(tt(),V1,V2) -> activate#(V1):1
          
          49:W:isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          50:W:isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
             -->_1 U21#(tt(),V1) -> isNatKind#(activate(V1)):35
             -->_1 U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)):34
             -->_1 U21#(tt(),V1) -> activate#(V1):10
          
          51:W:isNat#(n__s(V1)) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          42: U61#(tt(),M,N) -> activate#(N)
          41: U61#(tt(),M,N) -> activate#(M)
          38: U51#(tt(),N) -> activate#(N)
*** Step 6.b:1.a:3: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U15#(tt(),V2) -> activate#(V2)
            U21#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> activate#(V1)
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
            U52#(tt(),N) -> activate#(N)
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> activate#(V1)
             
          
          2:S:U11#(tt(),V1,V2) -> activate#(V2)
             
          
          3:S:U12#(tt(),V1,V2) -> activate#(V1)
             
          
          4:S:U12#(tt(),V1,V2) -> activate#(V2)
             
          
          5:S:U13#(tt(),V1,V2) -> activate#(V1)
             
          
          6:S:U13#(tt(),V1,V2) -> activate#(V2)
             
          
          7:S:U14#(tt(),V1,V2) -> activate#(V1)
             
          
          8:S:U14#(tt(),V1,V2) -> activate#(V2)
             
          
          9:S:U15#(tt(),V2) -> activate#(V2)
             
          
          10:S:U21#(tt(),V1) -> activate#(V1)
             
          
          11:S:U22#(tt(),V1) -> activate#(V1)
             
          
          12:S:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          13:S:U52#(tt(),N) -> activate#(N)
             
          
          14:S:U62#(tt(),M,N) -> activate#(M)
             
          
          15:S:U62#(tt(),M,N) -> activate#(N)
             
          
          16:S:U63#(tt(),M,N) -> activate#(M)
             
          
          17:S:U63#(tt(),M,N) -> activate#(N)
             
          
          18:S:U64#(tt(),M,N) -> activate#(M)
             
          
          19:S:U64#(tt(),M,N) -> activate#(N)
             
          
          20:S:isNat#(n__plus(V1,V2)) -> activate#(V1)
             
          
          21:S:isNat#(n__plus(V1,V2)) -> activate#(V2)
             
          
          22:S:isNat#(n__s(V1)) -> activate#(V1)
             
          
          23:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
             -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)),activate#(V2)):12
          
          24:S:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          25:W:U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
             -->_1 U12#(tt(),V1,V2) -> isNatKind#(activate(V2)):28
             -->_1 U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)):27
             -->_1 U12#(tt(),V1,V2) -> activate#(V2):4
             -->_1 U12#(tt(),V1,V2) -> activate#(V1):3
          
          26:W:U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          27:W:U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
             -->_1 U13#(tt(),V1,V2) -> isNatKind#(activate(V2)):30
             -->_1 U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)):29
             -->_1 U13#(tt(),V1,V2) -> activate#(V2):6
             -->_1 U13#(tt(),V1,V2) -> activate#(V1):5
          
          28:W:U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          29:W:U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
             -->_1 U14#(tt(),V1,V2) -> isNat#(activate(V1)):32
             -->_1 U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)):31
             -->_1 U14#(tt(),V1,V2) -> activate#(V2):8
             -->_1 U14#(tt(),V1,V2) -> activate#(V1):7
          
          30:W:U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          31:W:U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
             -->_1 U15#(tt(),V2) -> isNat#(activate(V2)):33
             -->_1 U15#(tt(),V2) -> activate#(V2):9
          
          32:W:U14#(tt(),V1,V2) -> isNat#(activate(V1))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          33:W:U15#(tt(),V2) -> isNat#(activate(V2))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          34:W:U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
             -->_1 U22#(tt(),V1) -> isNat#(activate(V1)):36
             -->_1 U22#(tt(),V1) -> activate#(V1):11
          
          35:W:U21#(tt(),V1) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          36:W:U22#(tt(),V1) -> isNat#(activate(V1))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          37:W:U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
             -->_1 U52#(tt(),N) -> activate#(N):13
          
          39:W:U51#(tt(),N) -> isNatKind#(activate(N))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          40:W:U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
             -->_1 U62#(tt(),M,N) -> isNat#(activate(N)):45
             -->_1 U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)):44
             -->_1 U62#(tt(),M,N) -> activate#(N):15
             -->_1 U62#(tt(),M,N) -> activate#(M):14
          
          43:W:U61#(tt(),M,N) -> isNatKind#(activate(M))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          44:W:U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
             -->_1 U63#(tt(),M,N) -> isNatKind#(activate(N)):47
             -->_1 U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)):46
             -->_1 U63#(tt(),M,N) -> activate#(N):17
             -->_1 U63#(tt(),M,N) -> activate#(M):16
          
          45:W:U62#(tt(),M,N) -> isNat#(activate(N))
             -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):51
             -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
             -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):48
             -->_1 isNat#(n__s(V1)) -> activate#(V1):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):21
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):20
          
          46:W:U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
             -->_1 U64#(tt(),M,N) -> activate#(N):19
             -->_1 U64#(tt(),M,N) -> activate#(M):18
          
          47:W:U63#(tt(),M,N) -> isNatKind#(activate(N))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          48:W:isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
             -->_1 U11#(tt(),V1,V2) -> isNatKind#(activate(V1)):26
             -->_1 U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)):25
             -->_1 U11#(tt(),V1,V2) -> activate#(V2):2
             -->_1 U11#(tt(),V1,V2) -> activate#(V1):1
          
          49:W:isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
          50:W:isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
             -->_1 U21#(tt(),V1) -> isNatKind#(activate(V1)):35
             -->_1 U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)):34
             -->_1 U21#(tt(),V1) -> activate#(V1):10
          
          51:W:isNat#(n__s(V1)) -> isNatKind#(activate(V1))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)),activate#(V1)):24
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):23
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
*** Step 6.b:1.a:4: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U15#(tt(),V2) -> activate#(V2)
            U21#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> activate#(V1)
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U52#(tt(),N) -> activate#(N)
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#
          ,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [4] x2 + [0]         
                 p(U12) = [0]                  
                 p(U13) = [0]                  
                 p(U14) = [0]                  
                 p(U15) = [0]                  
                 p(U16) = [0]                  
                 p(U21) = [1] x2 + [1]         
                 p(U22) = [0]                  
                 p(U23) = [1] x1 + [0]         
                 p(U31) = [0]                  
                 p(U32) = [3]                  
                 p(U41) = [0]                  
                 p(U51) = [2] x1 + [0]         
                 p(U52) = [0]                  
                 p(U61) = [5]                  
                 p(U62) = [0]                  
                 p(U63) = [4] x3 + [0]         
                 p(U64) = [0]                  
            p(activate) = [1]                  
               p(isNat) = [2] x1 + [6]         
           p(isNatKind) = [0]                  
                p(n__0) = [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1]                  
                p(plus) = [2]                  
                   p(s) = [1] x1 + [1]         
                  p(tt) = [0]                  
                  p(0#) = [0]                  
                p(U11#) = [0]                  
                p(U12#) = [0]                  
                p(U13#) = [0]                  
                p(U14#) = [0]                  
                p(U15#) = [0]                  
                p(U16#) = [0]                  
                p(U21#) = [0]                  
                p(U22#) = [0]                  
                p(U23#) = [0]                  
                p(U31#) = [0]                  
                p(U32#) = [0]                  
                p(U41#) = [0]                  
                p(U51#) = [0]                  
                p(U52#) = [0]                  
                p(U61#) = [5]                  
                p(U62#) = [4]                  
                p(U63#) = [4]                  
                p(U64#) = [0]                  
           p(activate#) = [0]                  
              p(isNat#) = [0]                  
          p(isNatKind#) = [0]                  
               p(plus#) = [0]                  
                  p(s#) = [0]                  
                 p(c_1) = [0]                  
                 p(c_2) = [0]                  
                 p(c_3) = [0]                  
                 p(c_4) = [0]                  
                 p(c_5) = [2]                  
                 p(c_6) = [0]                  
                 p(c_7) = [0]                  
                 p(c_8) = [0]                  
                 p(c_9) = [0]                  
                p(c_10) = [0]                  
                p(c_11) = [2] x1 + [0]         
                p(c_12) = [0]                  
                p(c_13) = [0]                  
                p(c_14) = [0]                  
                p(c_15) = [0]                  
                p(c_16) = [0]                  
                p(c_17) = [0]                  
                p(c_18) = [0]                  
                p(c_19) = [0]                  
                p(c_20) = [0]                  
                p(c_21) = [0]                  
                p(c_22) = [0]                  
                p(c_23) = [0]                  
                p(c_24) = [0]                  
                p(c_25) = [0]                  
                p(c_26) = [1] x4 + [0]         
                p(c_27) = [0]                  
                p(c_28) = [4] x1 + [1] x2 + [0]
                p(c_29) = [1] x1 + [0]         
                p(c_30) = [1] x1 + [0]         
                p(c_31) = [2] x2 + [0]         
                p(c_32) = [1]                  
                p(c_33) = [0]                  
        
        Following rules are strictly oriented:
        U62#(tt(),M,N) = [4]         
                       > [0]         
                       = activate#(M)
        
        U62#(tt(),M,N) = [4]         
                       > [0]         
                       = activate#(N)
        
        U63#(tt(),M,N) = [4]         
                       > [0]         
                       = activate#(M)
        
        U63#(tt(),M,N) = [4]         
                       > [0]         
                       = activate#(N)
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V2))                                                 
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V2))                                                 
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U15#(isNat(activate(V1)),activate(V2))                                   
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(V1))                                                     
        
                     U15#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                     U15#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(V2))                                                     
        
                     U21#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U22#(isNatKind(activate(V1)),activate(V1))                               
        
                     U21#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U21#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                     U22#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U22#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(V1))                                                     
        
                     U31#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_11(isNatKind#(activate(V2)))                                           
        
                      U51#(tt(),N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U52#(isNatKind(activate(N)),activate(N))                                 
        
                      U51#(tt(),N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(N))                                                  
        
                      U52#(tt(),N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U61#(tt(),M,N) =  [5]                                                                      
                                   >= [4]                                                                      
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))                     
        
                    U61#(tt(),M,N) =  [5]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(M))                                                  
        
                    U62#(tt(),M,N) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))                         
        
                    U62#(tt(),M,N) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(N))                                                      
        
                    U63#(tt(),M,N) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))                     
        
                    U63#(tt(),M,N) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(N))                                                  
        
                    U64#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U64#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                  isNat#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U21#(isNatKind(activate(V1)),activate(V1))                               
        
                  isNat#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  isNat#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
        isNatKind#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
              isNatKind#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_29(isNatKind#(activate(V1)))                                           
        
*** Step 6.b:1.a:5: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U15#(tt(),V2) -> activate#(V2)
            U21#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> activate#(V1)
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U52#(tt(),N) -> activate#(N)
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#
          ,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [0]                  
                 p(U12) = [0]                  
                 p(U13) = [3]                  
                 p(U14) = [0]                  
                 p(U15) = [0]                  
                 p(U16) = [0]                  
                 p(U21) = [1] x2 + [0]         
                 p(U22) = [0]                  
                 p(U23) = [0]                  
                 p(U31) = [0]                  
                 p(U32) = [0]                  
                 p(U41) = [3]                  
                 p(U51) = [0]                  
                 p(U52) = [2] x1 + [0]         
                 p(U61) = [0]                  
                 p(U62) = [0]                  
                 p(U63) = [0]                  
                 p(U64) = [0]                  
            p(activate) = [4]                  
               p(isNat) = [5]                  
           p(isNatKind) = [1] x1 + [2]         
                p(n__0) = [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [0]         
                p(plus) = [0]                  
                   p(s) = [0]                  
                  p(tt) = [0]                  
                  p(0#) = [0]                  
                p(U11#) = [0]                  
                p(U12#) = [0]                  
                p(U13#) = [0]                  
                p(U14#) = [0]                  
                p(U15#) = [0]                  
                p(U16#) = [0]                  
                p(U21#) = [0]                  
                p(U22#) = [0]                  
                p(U23#) = [0]                  
                p(U31#) = [0]                  
                p(U32#) = [0]                  
                p(U41#) = [0]                  
                p(U51#) = [1]                  
                p(U52#) = [1]                  
                p(U61#) = [1] x1 + [3]         
                p(U62#) = [2]                  
                p(U63#) = [2]                  
                p(U64#) = [2]                  
           p(activate#) = [0]                  
              p(isNat#) = [0]                  
          p(isNatKind#) = [0]                  
               p(plus#) = [0]                  
                  p(s#) = [0]                  
                 p(c_1) = [0]                  
                 p(c_2) = [0]                  
                 p(c_3) = [0]                  
                 p(c_4) = [0]                  
                 p(c_5) = [0]                  
                 p(c_6) = [0]                  
                 p(c_7) = [0]                  
                 p(c_8) = [0]                  
                 p(c_9) = [1] x2 + [0]         
                p(c_10) = [0]                  
                p(c_11) = [1] x1 + [0]         
                p(c_12) = [0]                  
                p(c_13) = [0]                  
                p(c_14) = [0]                  
                p(c_15) = [0]                  
                p(c_16) = [0]                  
                p(c_17) = [0]                  
                p(c_18) = [2] x1 + [0]         
                p(c_19) = [0]                  
                p(c_20) = [0]                  
                p(c_21) = [0]                  
                p(c_22) = [0]                  
                p(c_23) = [0]                  
                p(c_24) = [0]                  
                p(c_25) = [0]                  
                p(c_26) = [0]                  
                p(c_27) = [0]                  
                p(c_28) = [4] x1 + [1] x2 + [0]
                p(c_29) = [1] x1 + [0]         
                p(c_30) = [1] x1 + [1] x2 + [0]
                p(c_31) = [1] x1 + [0]         
                p(c_32) = [0]                  
                p(c_33) = [0]                  
        
        Following rules are strictly oriented:
          U52#(tt(),N) = [1]         
                       > [0]         
                       = activate#(N)
        
        U64#(tt(),M,N) = [2]         
                       > [0]         
                       = activate#(M)
        
        U64#(tt(),M,N) = [2]         
                       > [0]         
                       = activate#(N)
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U11#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U12#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V2))                                                 
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U13#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V2))                                                 
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U15#(isNat(activate(V1)),activate(V2))                                   
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U14#(tt(),V1,V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(V1))                                                     
        
                     U15#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                     U15#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(V2))                                                     
        
                     U21#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U22#(isNatKind(activate(V1)),activate(V1))                               
        
                     U21#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U21#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                     U22#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U22#(tt(),V1) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(V1))                                                     
        
                     U31#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_11(isNatKind#(activate(V2)))                                           
        
                      U51#(tt(),N) =  [1]                                                                      
                                   >= [1]                                                                      
                                   =  U52#(isNatKind(activate(N)),activate(N))                                 
        
                      U51#(tt(),N) =  [1]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(N))                                                  
        
                    U61#(tt(),M,N) =  [3]                                                                      
                                   >= [2]                                                                      
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))                     
        
                    U61#(tt(),M,N) =  [3]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(M))                                                  
        
                    U62#(tt(),M,N) =  [2]                                                                      
                                   >= [2]                                                                      
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))                         
        
                    U62#(tt(),M,N) =  [2]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U62#(tt(),M,N) =  [2]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U62#(tt(),M,N) =  [2]                                                                      
                                   >= [0]                                                                      
                                   =  isNat#(activate(N))                                                      
        
                    U63#(tt(),M,N) =  [2]                                                                      
                                   >= [2]                                                                      
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))                     
        
                    U63#(tt(),M,N) =  [2]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U63#(tt(),M,N) =  [2]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U63#(tt(),M,N) =  [2]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(N))                                                  
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
            isNat#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                  isNat#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U21#(isNatKind(activate(V1)),activate(V1))                               
        
                  isNat#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  isNat#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
        isNatKind#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
              isNatKind#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_29(isNatKind#(activate(V1)))                                           
        
*** Step 6.b:1.a:6: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U15#(tt(),V2) -> activate#(V2)
            U21#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> activate#(V1)
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#
          ,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                 p(U11) = [0]                                    
                 p(U12) = [0]                                    
                 p(U13) = [0]                                    
                 p(U14) = [0]                                    
                 p(U15) = [0]                                    
                 p(U16) = [0]                                    
                 p(U21) = [0]                                    
                 p(U22) = [0]                                    
                 p(U23) = [0]                                    
                 p(U31) = [0]                                    
                 p(U32) = [0]                                    
                 p(U41) = [0]                                    
                 p(U51) = [0]                                    
                 p(U52) = [0]                                    
                 p(U61) = [0]                                    
                 p(U62) = [0]                                    
                 p(U63) = [0]                                    
                 p(U64) = [7]                                    
            p(activate) = [0]                                    
               p(isNat) = [0]                                    
           p(isNatKind) = [0]                                    
                p(n__0) = [0]                                    
             p(n__plus) = [1] x2 + [0]                           
                p(n__s) = [0]                                    
                p(plus) = [0]                                    
                   p(s) = [0]                                    
                  p(tt) = [0]                                    
                  p(0#) = [0]                                    
                p(U11#) = [4]                                    
                p(U12#) = [4]                                    
                p(U13#) = [4]                                    
                p(U14#) = [4]                                    
                p(U15#) = [4]                                    
                p(U16#) = [0]                                    
                p(U21#) = [4]                                    
                p(U22#) = [4]                                    
                p(U23#) = [0]                                    
                p(U31#) = [0]                                    
                p(U32#) = [0]                                    
                p(U41#) = [0]                                    
                p(U51#) = [4]                                    
                p(U52#) = [3]                                    
                p(U61#) = [1] x2 + [7]                           
                p(U62#) = [7]                                    
                p(U63#) = [0]                                    
                p(U64#) = [0]                                    
           p(activate#) = [0]                                    
              p(isNat#) = [4]                                    
          p(isNatKind#) = [0]                                    
               p(plus#) = [0]                                    
                  p(s#) = [0]                                    
                 p(c_1) = [0]                                    
                 p(c_2) = [0]                                    
                 p(c_3) = [0]                                    
                 p(c_4) = [0]                                    
                 p(c_5) = [1] x3 + [1]                           
                 p(c_6) = [1]                                    
                 p(c_7) = [2]                                    
                 p(c_8) = [4] x3 + [1]                           
                 p(c_9) = [4] x1 + [4]                           
                p(c_10) = [1]                                    
                p(c_11) = [1] x1 + [0]                           
                p(c_12) = [4]                                    
                p(c_13) = [1]                                    
                p(c_14) = [2] x1 + [2] x2 + [4] x3 + [1] x4 + [0]
                p(c_15) = [1]                                    
                p(c_16) = [1] x2 + [1] x5 + [4]                  
                p(c_17) = [1] x1 + [1] x3 + [2]                  
                p(c_18) = [2] x5 + [2]                           
                p(c_19) = [1] x1 + [1]                           
                p(c_20) = [0]                                    
                p(c_21) = [0]                                    
                p(c_22) = [1] x1 + [0]                           
                p(c_23) = [1]                                    
                p(c_24) = [1]                                    
                p(c_25) = [1] x3 + [1] x4 + [0]                  
                p(c_26) = [1] x1 + [1]                           
                p(c_27) = [1]                                    
                p(c_28) = [2] x1 + [4] x2 + [0]                  
                p(c_29) = [4] x1 + [0]                           
                p(c_30) = [1] x1 + [4] x2 + [4]                  
                p(c_31) = [1] x2 + [0]                           
                p(c_32) = [1]                                    
                p(c_33) = [1]                                    
        
        Following rules are strictly oriented:
              U11#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V1)
        
              U11#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V2)
        
              U12#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V1)
        
              U12#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V2)
        
              U13#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V1)
        
              U13#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V2)
        
              U14#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V1)
        
              U14#(tt(),V1,V2) = [4]          
                               > [0]          
                               = activate#(V2)
        
                 U15#(tt(),V2) = [4]          
                               > [0]          
                               = activate#(V2)
        
                 U21#(tt(),V1) = [4]          
                               > [0]          
                               = activate#(V1)
        
                 U22#(tt(),V1) = [4]          
                               > [0]          
                               = activate#(V1)
        
        isNat#(n__plus(V1,V2)) = [4]          
                               > [0]          
                               = activate#(V1)
        
        isNat#(n__plus(V1,V2)) = [4]          
                               > [0]          
                               = activate#(V2)
        
              isNat#(n__s(V1)) = [4]          
                               > [0]          
                               = activate#(V1)
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
                  U11#(tt(),V1,V2) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                  U12#(tt(),V1,V2) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U12#(tt(),V1,V2) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V2))                                                 
        
                  U13#(tt(),V1,V2) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U13#(tt(),V1,V2) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V2))                                                 
        
                  U14#(tt(),V1,V2) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U15#(isNat(activate(V1)),activate(V2))                                   
        
                  U14#(tt(),V1,V2) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  isNat#(activate(V1))                                                     
        
                     U15#(tt(),V2) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  isNat#(activate(V2))                                                     
        
                     U21#(tt(),V1) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U22#(isNatKind(activate(V1)),activate(V1))                               
        
                     U21#(tt(),V1) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                     U22#(tt(),V1) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  isNat#(activate(V1))                                                     
        
                     U31#(tt(),V2) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_11(isNatKind#(activate(V2)))                                           
        
                      U51#(tt(),N) =  [4]                                                                      
                                   >= [3]                                                                      
                                   =  U52#(isNatKind(activate(N)),activate(N))                                 
        
                      U51#(tt(),N) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(N))                                                  
        
                      U52#(tt(),N) =  [3]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U61#(tt(),M,N) =  [1] M + [7]                                                              
                                   >= [7]                                                                      
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))                     
        
                    U61#(tt(),M,N) =  [1] M + [7]                                                              
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(M))                                                  
        
                    U62#(tt(),M,N) =  [7]                                                                      
                                   >= [0]                                                                      
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))                         
        
                    U62#(tt(),M,N) =  [7]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U62#(tt(),M,N) =  [7]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U62#(tt(),M,N) =  [7]                                                                      
                                   >= [4]                                                                      
                                   =  isNat#(activate(N))                                                      
        
                    U63#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))                     
        
                    U63#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U63#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U63#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(N))                                                  
        
                    U64#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U64#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
            isNat#(n__plus(V1,V2)) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
            isNat#(n__plus(V1,V2)) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
                  isNat#(n__s(V1)) =  [4]                                                                      
                                   >= [4]                                                                      
                                   =  U21#(isNatKind(activate(V1)),activate(V1))                               
        
                  isNat#(n__s(V1)) =  [4]                                                                      
                                   >= [0]                                                                      
                                   =  isNatKind#(activate(V1))                                                 
        
        isNatKind#(n__plus(V1,V2)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
              isNatKind#(n__s(V1)) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  c_29(isNatKind#(activate(V1)))                                           
        
*** Step 6.b:1.a:7: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [1]                                             
                 p(U11) = [1]                                             
                 p(U12) = [2]                                             
                 p(U13) = [2] x1 + [2] x3 + [0]                           
                 p(U14) = [0]                                             
                 p(U15) = [2] x2 + [4]                                    
                 p(U16) = [4] x1 + [4]                                    
                 p(U21) = [4] x2 + [0]                                    
                 p(U22) = [1] x1 + [7]                                    
                 p(U23) = [0]                                             
                 p(U31) = [0]                                             
                 p(U32) = [5] x1 + [5]                                    
                 p(U41) = [4] x1 + [0]                                    
                 p(U51) = [1] x2 + [1]                                    
                 p(U52) = [1] x2 + [0]                                    
                 p(U61) = [1] x2 + [1] x3 + [1]                           
                 p(U62) = [1] x2 + [1] x3 + [1]                           
                 p(U63) = [1] x2 + [1] x3 + [1]                           
                 p(U64) = [1] x2 + [1] x3 + [1]                           
            p(activate) = [1] x1 + [0]                                    
               p(isNat) = [1] x1 + [0]                                    
           p(isNatKind) = [1]                                             
                p(n__0) = [1]                                             
             p(n__plus) = [1] x1 + [1] x2 + [0]                           
                p(n__s) = [1] x1 + [1]                                    
                p(plus) = [1] x1 + [1] x2 + [0]                           
                   p(s) = [1] x1 + [1]                                    
                  p(tt) = [0]                                             
                  p(0#) = [1]                                             
                p(U11#) = [6] x2 + [6] x3 + [0]                           
                p(U12#) = [6] x2 + [6] x3 + [0]                           
                p(U13#) = [6] x2 + [6] x3 + [0]                           
                p(U14#) = [6] x2 + [6] x3 + [0]                           
                p(U15#) = [6] x2 + [0]                                    
                p(U16#) = [1] x1 + [0]                                    
                p(U21#) = [6] x2 + [6]                                    
                p(U22#) = [6] x2 + [5]                                    
                p(U23#) = [4]                                             
                p(U31#) = [6] x2 + [0]                                    
                p(U32#) = [0]                                             
                p(U41#) = [1] x1 + [0]                                    
                p(U51#) = [7] x2 + [2]                                    
                p(U52#) = [4] x2 + [2]                                    
                p(U61#) = [1] x1 + [7] x2 + [7] x3 + [1]                  
                p(U62#) = [7] x2 + [6] x3 + [1]                           
                p(U63#) = [4] x2 + [6] x3 + [1]                           
                p(U64#) = [4] x2 + [1]                                    
           p(activate#) = [0]                                             
              p(isNat#) = [6] x1 + [0]                                    
          p(isNatKind#) = [6] x1 + [0]                                    
               p(plus#) = [2]                                             
                  p(s#) = [1]                                             
                 p(c_1) = [0]                                             
                 p(c_2) = [4] x1 + [1] x2 + [2] x3 + [1] x4 + [0]         
                 p(c_3) = [4] x1 + [1] x3 + [1]                           
                 p(c_4) = [1] x4 + [2] x5 + [1]                           
                 p(c_5) = [4] x1 + [1] x2 + [1] x4 + [0]                  
                 p(c_6) = [4] x1 + [1] x2 + [0]                           
                 p(c_7) = [1]                                             
                 p(c_8) = [1] x4 + [0]                                    
                 p(c_9) = [1] x2 + [1]                                    
                p(c_10) = [1]                                             
                p(c_11) = [1] x1 + [0]                                    
                p(c_12) = [1]                                             
                p(c_13) = [2]                                             
                p(c_14) = [1] x1 + [4] x2 + [4] x4 + [0]                  
                p(c_15) = [1] x1 + [0]                                    
                p(c_16) = [4] x2 + [1] x5 + [0]                           
                p(c_17) = [1] x2 + [1] x3 + [2] x5 + [0]                  
                p(c_18) = [1] x1 + [1] x2 + [1] x3 + [1] x4 + [1] x5 + [1]
                p(c_19) = [0]                                             
                p(c_20) = [0]                                             
                p(c_21) = [1]                                             
                p(c_22) = [2] x1 + [2]                                    
                p(c_23) = [1] x1 + [2]                                    
                p(c_24) = [0]                                             
                p(c_25) = [4] x3 + [4] x5 + [0]                           
                p(c_26) = [0]                                             
                p(c_27) = [0]                                             
                p(c_28) = [1] x1 + [1] x2 + [0]                           
                p(c_29) = [1] x1 + [4]                                    
                p(c_30) = [1] x1 + [2] x2 + [1]                           
                p(c_31) = [0]                                             
                p(c_32) = [1]                                             
                p(c_33) = [1]                                             
        
        Following rules are strictly oriented:
        isNatKind#(n__s(V1)) = [6] V1 + [6]                  
                             > [6] V1 + [4]                  
                             = c_29(isNatKind#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [6] V2 + [0]                                                    
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
                  U11#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U11#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U11#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
                  U12#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [6] V2 + [0]                                                    
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U12#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U12#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U12#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V2 + [0]                                                             
                                   =  isNatKind#(activate(V2))                                                 
        
                  U13#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [6] V2 + [0]                                                    
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U13#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U13#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U13#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V2 + [0]                                                             
                                   =  isNatKind#(activate(V2))                                                 
        
                  U14#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V2 + [0]                                                             
                                   =  U15#(isNat(activate(V1)),activate(V2))                                   
        
                  U14#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U14#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U14#(tt(),V1,V2) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [0]                                                             
                                   =  isNat#(activate(V1))                                                     
        
                     U15#(tt(),V2) =  [6] V2 + [0]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                     U15#(tt(),V2) =  [6] V2 + [0]                                                             
                                   >= [6] V2 + [0]                                                             
                                   =  isNat#(activate(V2))                                                     
        
                     U21#(tt(),V1) =  [6] V1 + [6]                                                             
                                   >= [6] V1 + [5]                                                             
                                   =  U22#(isNatKind(activate(V1)),activate(V1))                               
        
                     U21#(tt(),V1) =  [6] V1 + [6]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U21#(tt(),V1) =  [6] V1 + [6]                                                             
                                   >= [6] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
                     U22#(tt(),V1) =  [6] V1 + [5]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U22#(tt(),V1) =  [6] V1 + [5]                                                             
                                   >= [6] V1 + [0]                                                             
                                   =  isNat#(activate(V1))                                                     
        
                     U31#(tt(),V2) =  [6] V2 + [0]                                                             
                                   >= [6] V2 + [0]                                                             
                                   =  c_11(isNatKind#(activate(V2)))                                           
        
                      U51#(tt(),N) =  [7] N + [2]                                                              
                                   >= [4] N + [2]                                                              
                                   =  U52#(isNatKind(activate(N)),activate(N))                                 
        
                      U51#(tt(),N) =  [7] N + [2]                                                              
                                   >= [6] N + [0]                                                              
                                   =  isNatKind#(activate(N))                                                  
        
                      U52#(tt(),N) =  [4] N + [2]                                                              
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U61#(tt(),M,N) =  [7] M + [7] N + [1]                                                      
                                   >= [7] M + [6] N + [1]                                                      
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))                     
        
                    U61#(tt(),M,N) =  [7] M + [7] N + [1]                                                      
                                   >= [6] M + [0]                                                              
                                   =  isNatKind#(activate(M))                                                  
        
                    U62#(tt(),M,N) =  [7] M + [6] N + [1]                                                      
                                   >= [4] M + [6] N + [1]                                                      
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))                         
        
                    U62#(tt(),M,N) =  [7] M + [6] N + [1]                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U62#(tt(),M,N) =  [7] M + [6] N + [1]                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U62#(tt(),M,N) =  [7] M + [6] N + [1]                                                      
                                   >= [6] N + [0]                                                              
                                   =  isNat#(activate(N))                                                      
        
                    U63#(tt(),M,N) =  [4] M + [6] N + [1]                                                      
                                   >= [4] M + [1]                                                              
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))                     
        
                    U63#(tt(),M,N) =  [4] M + [6] N + [1]                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U63#(tt(),M,N) =  [4] M + [6] N + [1]                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U63#(tt(),M,N) =  [4] M + [6] N + [1]                                                      
                                   >= [6] N + [0]                                                              
                                   =  isNatKind#(activate(N))                                                  
        
                    U64#(tt(),M,N) =  [4] M + [1]                                                              
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U64#(tt(),M,N) =  [4] M + [1]                                                              
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
            isNat#(n__plus(V1,V2)) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [6] V2 + [0]                                                    
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
            isNat#(n__plus(V1,V2)) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
            isNat#(n__plus(V1,V2)) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
            isNat#(n__plus(V1,V2)) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
                  isNat#(n__s(V1)) =  [6] V1 + [6]                                                             
                                   >= [6] V1 + [6]                                                             
                                   =  U21#(isNatKind(activate(V1)),activate(V1))                               
        
                  isNat#(n__s(V1)) =  [6] V1 + [6]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  isNat#(n__s(V1)) =  [6] V1 + [6]                                                             
                                   >= [6] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
        isNatKind#(n__plus(V1,V2)) =  [6] V1 + [6] V2 + [0]                                                    
                                   >= [6] V1 + [6] V2 + [0]                                                    
                                   =  c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
                               0() =  [1]                                                                      
                                   >= [1]                                                                      
                                   =  n__0()                                                                   
        
                       U51(tt(),N) =  [1] N + [1]                                                              
                                   >= [1] N + [0]                                                              
                                   =  U52(isNatKind(activate(N)),activate(N))                                  
        
                       U52(tt(),N) =  [1] N + [0]                                                              
                                   >= [1] N + [0]                                                              
                                   =  activate(N)                                                              
        
                     U61(tt(),M,N) =  [1] M + [1] N + [1]                                                      
                                   >= [1] M + [1] N + [1]                                                      
                                   =  U62(isNatKind(activate(M)),activate(M),activate(N))                      
        
                     U62(tt(),M,N) =  [1] M + [1] N + [1]                                                      
                                   >= [1] M + [1] N + [1]                                                      
                                   =  U63(isNat(activate(N)),activate(M),activate(N))                          
        
                     U63(tt(),M,N) =  [1] M + [1] N + [1]                                                      
                                   >= [1] M + [1] N + [1]                                                      
                                   =  U64(isNatKind(activate(N)),activate(M),activate(N))                      
        
                     U64(tt(),M,N) =  [1] M + [1] N + [1]                                                      
                                   >= [1] M + [1] N + [1]                                                      
                                   =  s(plus(activate(N),activate(M)))                                         
        
                       activate(X) =  [1] X + [0]                                                              
                                   >= [1] X + [0]                                                              
                                   =  X                                                                        
        
                  activate(n__0()) =  [1]                                                                      
                                   >= [1]                                                                      
                                   =  0()                                                                      
        
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                                    
                                   >= [1] X1 + [1] X2 + [0]                                                    
                                   =  plus(activate(X1),activate(X2))                                          
        
                 activate(n__s(X)) =  [1] X + [1]                                                              
                                   >= [1] X + [1]                                                              
                                   =  s(activate(X))                                                           
        
                       plus(N,0()) =  [1] N + [1]                                                              
                                   >= [1] N + [1]                                                              
                                   =  U51(isNat(N),N)                                                          
        
                      plus(N,s(M)) =  [1] M + [1] N + [1]                                                      
                                   >= [1] M + [1] N + [1]                                                      
                                   =  U61(isNat(M),M,N)                                                        
        
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                                    
                                   >= [1] X1 + [1] X2 + [0]                                                    
                                   =  n__plus(X1,X2)                                                           
        
                              s(X) =  [1] X + [1]                                                              
                                   >= [1] X + [1]                                                              
                                   =  n__s(X)                                                                  
        
*** Step 6.b:1.a:8: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [2] x1 + [3] x2 + [4]         
                 p(U12) = [2] x1 + [7]                  
                 p(U13) = [1]                           
                 p(U14) = [2] x1 + [1] x2 + [4] x3 + [6]
                 p(U15) = [4] x2 + [6]                  
                 p(U16) = [0]                           
                 p(U21) = [3] x2 + [4]                  
                 p(U22) = [2] x1 + [1] x2 + [0]         
                 p(U23) = [5] x1 + [7]                  
                 p(U31) = [2] x1 + [2]                  
                 p(U32) = [5]                           
                 p(U41) = [2]                           
                 p(U51) = [1] x2 + [0]                  
                 p(U52) = [1] x2 + [0]                  
                 p(U61) = [1] x2 + [1] x3 + [3]         
                 p(U62) = [1] x2 + [1] x3 + [3]         
                 p(U63) = [1] x2 + [1] x3 + [3]         
                 p(U64) = [1] x2 + [1] x3 + [3]         
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1]                           
           p(isNatKind) = [1]                           
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [3]         
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [1] x1 + [1] x2 + [3]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [0]                           
                  p(0#) = [1]                           
                p(U11#) = [1] x2 + [1] x3 + [4]         
                p(U12#) = [1] x2 + [1] x3 + [4]         
                p(U13#) = [1] x2 + [1] x3 + [4]         
                p(U14#) = [1] x2 + [1] x3 + [3]         
                p(U15#) = [1] x2 + [3]                  
                p(U16#) = [0]                           
                p(U21#) = [1] x2 + [2]                  
                p(U22#) = [1] x2 + [2]                  
                p(U23#) = [1] x1 + [0]                  
                p(U31#) = [1] x2 + [0]                  
                p(U32#) = [4] x1 + [0]                  
                p(U41#) = [0]                           
                p(U51#) = [4] x2 + [2]                  
                p(U52#) = [3] x2 + [0]                  
                p(U61#) = [4] x2 + [4] x3 + [2]         
                p(U62#) = [4] x2 + [4] x3 + [2]         
                p(U63#) = [1] x2 + [4] x3 + [2]         
                p(U64#) = [1] x3 + [0]                  
           p(activate#) = [0]                           
              p(isNat#) = [1] x1 + [2]                  
          p(isNatKind#) = [1] x1 + [0]                  
               p(plus#) = [4] x1 + [1]                  
                  p(s#) = [1] x1 + [0]                  
                 p(c_1) = [1]                           
                 p(c_2) = [1] x3 + [1] x4 + [1]         
                 p(c_3) = [1] x1 + [2] x5 + [0]         
                 p(c_4) = [4] x1 + [4] x2 + [1] x4 + [1]
                 p(c_5) = [1] x4 + [2]                  
                 p(c_6) = [2] x1 + [2]                  
                 p(c_7) = [2]                           
                 p(c_8) = [1] x3 + [1] x4 + [0]         
                 p(c_9) = [2] x1 + [1]                  
                p(c_10) = [4]                           
                p(c_11) = [1] x1 + [0]                  
                p(c_12) = [1]                           
                p(c_13) = [1]                           
                p(c_14) = [4] x1 + [4] x3 + [1]         
                p(c_15) = [2] x1 + [2]                  
                p(c_16) = [4] x2 + [4] x4 + [1]         
                p(c_17) = [1] x1 + [2] x5 + [0]         
                p(c_18) = [1] x5 + [0]                  
                p(c_19) = [1] x1 + [1]                  
                p(c_20) = [4]                           
                p(c_21) = [1] x1 + [0]                  
                p(c_22) = [4] x1 + [2]                  
                p(c_23) = [1]                           
                p(c_24) = [1]                           
                p(c_25) = [0]                           
                p(c_26) = [1] x2 + [4] x3 + [0]         
                p(c_27) = [1]                           
                p(c_28) = [1] x1 + [1] x2 + [0]         
                p(c_29) = [1] x1 + [0]                  
                p(c_30) = [1] x1 + [1] x2 + [0]         
                p(c_31) = [4]                           
                p(c_32) = [2]                           
                p(c_33) = [0]                           
        
        Following rules are strictly oriented:
        isNatKind#(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3]                                                    
                                   > [1] V1 + [1] V2 + [0]                                                    
                                   = c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [1] V1 + [1] V2 + [4]                                  
                                 =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
        
                U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [0]                                                    
                                 =  activate#(V2)                                          
        
                U11#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [1] V1 + [0]                                           
                                 =  isNatKind#(activate(V1))                               
        
                U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [1] V1 + [1] V2 + [4]                                  
                                 =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
        
                U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [0]                                                    
                                 =  activate#(V2)                                          
        
                U12#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [1] V2 + [0]                                           
                                 =  isNatKind#(activate(V2))                               
        
                U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [1] V1 + [1] V2 + [3]                                  
                                 =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
        
                U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [0]                                                    
                                 =  activate#(V2)                                          
        
                U13#(tt(),V1,V2) =  [1] V1 + [1] V2 + [4]                                  
                                 >= [1] V2 + [0]                                           
                                 =  isNatKind#(activate(V2))                               
        
                U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]                                  
                                 >= [1] V2 + [3]                                           
                                 =  U15#(isNat(activate(V1)),activate(V2))                 
        
                U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]                                  
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]                                  
                                 >= [0]                                                    
                                 =  activate#(V2)                                          
        
                U14#(tt(),V1,V2) =  [1] V1 + [1] V2 + [3]                                  
                                 >= [1] V1 + [2]                                           
                                 =  isNat#(activate(V1))                                   
        
                   U15#(tt(),V2) =  [1] V2 + [3]                                           
                                 >= [0]                                                    
                                 =  activate#(V2)                                          
        
                   U15#(tt(),V2) =  [1] V2 + [3]                                           
                                 >= [1] V2 + [2]                                           
                                 =  isNat#(activate(V2))                                   
        
                   U21#(tt(),V1) =  [1] V1 + [2]                                           
                                 >= [1] V1 + [2]                                           
                                 =  U22#(isNatKind(activate(V1)),activate(V1))             
        
                   U21#(tt(),V1) =  [1] V1 + [2]                                           
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                   U21#(tt(),V1) =  [1] V1 + [2]                                           
                                 >= [1] V1 + [0]                                           
                                 =  isNatKind#(activate(V1))                               
        
                   U22#(tt(),V1) =  [1] V1 + [2]                                           
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                   U22#(tt(),V1) =  [1] V1 + [2]                                           
                                 >= [1] V1 + [2]                                           
                                 =  isNat#(activate(V1))                                   
        
                   U31#(tt(),V2) =  [1] V2 + [0]                                           
                                 >= [1] V2 + [0]                                           
                                 =  c_11(isNatKind#(activate(V2)))                         
        
                    U51#(tt(),N) =  [4] N + [2]                                            
                                 >= [3] N + [0]                                            
                                 =  U52#(isNatKind(activate(N)),activate(N))               
        
                    U51#(tt(),N) =  [4] N + [2]                                            
                                 >= [1] N + [0]                                            
                                 =  isNatKind#(activate(N))                                
        
                    U52#(tt(),N) =  [3] N + [0]                                            
                                 >= [0]                                                    
                                 =  activate#(N)                                           
        
                  U61#(tt(),M,N) =  [4] M + [4] N + [2]                                    
                                 >= [4] M + [4] N + [2]                                    
                                 =  U62#(isNatKind(activate(M)),activate(M),activate(N))   
        
                  U61#(tt(),M,N) =  [4] M + [4] N + [2]                                    
                                 >= [1] M + [0]                                            
                                 =  isNatKind#(activate(M))                                
        
                  U62#(tt(),M,N) =  [4] M + [4] N + [2]                                    
                                 >= [1] M + [4] N + [2]                                    
                                 =  U63#(isNat(activate(N)),activate(M),activate(N))       
        
                  U62#(tt(),M,N) =  [4] M + [4] N + [2]                                    
                                 >= [0]                                                    
                                 =  activate#(M)                                           
        
                  U62#(tt(),M,N) =  [4] M + [4] N + [2]                                    
                                 >= [0]                                                    
                                 =  activate#(N)                                           
        
                  U62#(tt(),M,N) =  [4] M + [4] N + [2]                                    
                                 >= [1] N + [2]                                            
                                 =  isNat#(activate(N))                                    
        
                  U63#(tt(),M,N) =  [1] M + [4] N + [2]                                    
                                 >= [1] N + [0]                                            
                                 =  U64#(isNatKind(activate(N)),activate(M),activate(N))   
        
                  U63#(tt(),M,N) =  [1] M + [4] N + [2]                                    
                                 >= [0]                                                    
                                 =  activate#(M)                                           
        
                  U63#(tt(),M,N) =  [1] M + [4] N + [2]                                    
                                 >= [0]                                                    
                                 =  activate#(N)                                           
        
                  U63#(tt(),M,N) =  [1] M + [4] N + [2]                                    
                                 >= [1] N + [0]                                            
                                 =  isNatKind#(activate(N))                                
        
                  U64#(tt(),M,N) =  [1] N + [0]                                            
                                 >= [0]                                                    
                                 =  activate#(M)                                           
        
                  U64#(tt(),M,N) =  [1] N + [0]                                            
                                 >= [0]                                                    
                                 =  activate#(N)                                           
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]                                  
                                 >= [1] V1 + [1] V2 + [4]                                  
                                 =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]                                  
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]                                  
                                 >= [0]                                                    
                                 =  activate#(V2)                                          
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]                                  
                                 >= [1] V1 + [0]                                           
                                 =  isNatKind#(activate(V1))                               
        
                isNat#(n__s(V1)) =  [1] V1 + [2]                                           
                                 >= [1] V1 + [2]                                           
                                 =  U21#(isNatKind(activate(V1)),activate(V1))             
        
                isNat#(n__s(V1)) =  [1] V1 + [2]                                           
                                 >= [0]                                                    
                                 =  activate#(V1)                                          
        
                isNat#(n__s(V1)) =  [1] V1 + [2]                                           
                                 >= [1] V1 + [0]                                           
                                 =  isNatKind#(activate(V1))                               
        
            isNatKind#(n__s(V1)) =  [1] V1 + [0]                                           
                                 >= [1] V1 + [0]                                           
                                 =  c_29(isNatKind#(activate(V1)))                         
        
                             0() =  [0]                                                    
                                 >= [0]                                                    
                                 =  n__0()                                                 
        
                     U51(tt(),N) =  [1] N + [0]                                            
                                 >= [1] N + [0]                                            
                                 =  U52(isNatKind(activate(N)),activate(N))                
        
                     U52(tt(),N) =  [1] N + [0]                                            
                                 >= [1] N + [0]                                            
                                 =  activate(N)                                            
        
                   U61(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                 >= [1] M + [1] N + [3]                                    
                                 =  U62(isNatKind(activate(M)),activate(M),activate(N))    
        
                   U62(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                 >= [1] M + [1] N + [3]                                    
                                 =  U63(isNat(activate(N)),activate(M),activate(N))        
        
                   U63(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                 >= [1] M + [1] N + [3]                                    
                                 =  U64(isNatKind(activate(N)),activate(M),activate(N))    
        
                   U64(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                 >= [1] M + [1] N + [3]                                    
                                 =  s(plus(activate(N),activate(M)))                       
        
                     activate(X) =  [1] X + [0]                                            
                                 >= [1] X + [0]                                            
                                 =  X                                                      
        
                activate(n__0()) =  [0]                                                    
                                 >= [0]                                                    
                                 =  0()                                                    
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]                                  
                                 >= [1] X1 + [1] X2 + [3]                                  
                                 =  plus(activate(X1),activate(X2))                        
        
               activate(n__s(X)) =  [1] X + [0]                                            
                                 >= [1] X + [0]                                            
                                 =  s(activate(X))                                         
        
                     plus(N,0()) =  [1] N + [3]                                            
                                 >= [1] N + [0]                                            
                                 =  U51(isNat(N),N)                                        
        
                    plus(N,s(M)) =  [1] M + [1] N + [3]                                    
                                 >= [1] M + [1] N + [3]                                    
                                 =  U61(isNat(M),M,N)                                      
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [3]                                  
                                 >= [1] X1 + [1] X2 + [3]                                  
                                 =  n__plus(X1,X2)                                         
        
                            s(X) =  [1] X + [0]                                            
                                 >= [1] X + [0]                                            
                                 =  n__s(X)                                                
        
*** Step 6.b:1.a:9: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_11) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [6] x1 + [2] x3 + [4]         
                 p(U12) = [4] x1 + [4] x3 + [4]         
                 p(U13) = [2]                           
                 p(U14) = [4] x3 + [1]                  
                 p(U15) = [1] x1 + [2] x2 + [0]         
                 p(U16) = [0]                           
                 p(U21) = [2] x1 + [2] x2 + [2]         
                 p(U22) = [4] x1 + [4] x2 + [4]         
                 p(U23) = [2]                           
                 p(U31) = [6]                           
                 p(U32) = [5]                           
                 p(U41) = [5] x1 + [3]                  
                 p(U51) = [1] x2 + [2]                  
                 p(U52) = [1] x2 + [2]                  
                 p(U61) = [1] x2 + [1] x3 + [2]         
                 p(U62) = [1] x2 + [1] x3 + [2]         
                 p(U63) = [1] x2 + [1] x3 + [2]         
                 p(U64) = [1] x2 + [1] x3 + [2]         
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [0]                           
           p(isNatKind) = [1]                           
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [2]         
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [1] x1 + [1] x2 + [2]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [0]                           
                  p(0#) = [0]                           
                p(U11#) = [4] x2 + [4] x3 + [0]         
                p(U12#) = [4] x2 + [4] x3 + [0]         
                p(U13#) = [4] x2 + [4] x3 + [0]         
                p(U14#) = [4] x2 + [4] x3 + [0]         
                p(U15#) = [4] x2 + [0]                  
                p(U16#) = [0]                           
                p(U21#) = [4] x2 + [0]                  
                p(U22#) = [4] x2 + [0]                  
                p(U23#) = [1]                           
                p(U31#) = [4] x2 + [2]                  
                p(U32#) = [1] x1 + [0]                  
                p(U41#) = [1]                           
                p(U51#) = [6] x2 + [0]                  
                p(U52#) = [4] x2 + [0]                  
                p(U61#) = [1] x1 + [5] x2 + [4] x3 + [1]
                p(U62#) = [1] x2 + [4] x3 + [1]         
                p(U63#) = [4] x3 + [0]                  
                p(U64#) = [0]                           
           p(activate#) = [0]                           
              p(isNat#) = [4] x1 + [0]                  
          p(isNatKind#) = [4] x1 + [0]                  
               p(plus#) = [1] x1 + [1] x2 + [0]         
                  p(s#) = [1]                           
                 p(c_1) = [0]                           
                 p(c_2) = [1] x1 + [4] x2 + [1] x3 + [1]
                 p(c_3) = [4] x2 + [2] x3 + [1] x5 + [0]
                 p(c_4) = [2] x2 + [1] x3 + [1] x4 + [0]
                 p(c_5) = [1] x1 + [1] x2 + [1] x4 + [2]
                 p(c_6) = [1] x1 + [0]                  
                 p(c_7) = [4]                           
                 p(c_8) = [1] x2 + [1]                  
                 p(c_9) = [1] x1 + [1] x2 + [1]         
                p(c_10) = [2]                           
                p(c_11) = [1] x1 + [1]                  
                p(c_12) = [1]                           
                p(c_13) = [1]                           
                p(c_14) = [4] x1 + [1] x2 + [4] x4 + [0]
                p(c_15) = [1]                           
                p(c_16) = [1] x2 + [2] x4 + [2] x5 + [1]
                p(c_17) = [2] x1 + [2] x3 + [1] x4 + [4]
                p(c_18) = [1] x1 + [1] x3 + [4] x5 + [1]
                p(c_19) = [2] x1 + [4]                  
                p(c_20) = [0]                           
                p(c_21) = [2] x1 + [0]                  
                p(c_22) = [2] x2 + [0]                  
                p(c_23) = [2] x1 + [4]                  
                p(c_24) = [1]                           
                p(c_25) = [1] x3 + [0]                  
                p(c_26) = [0]                           
                p(c_27) = [1]                           
                p(c_28) = [1] x1 + [1] x2 + [6]         
                p(c_29) = [1] x1 + [0]                  
                p(c_30) = [1] x2 + [0]                  
                p(c_31) = [1] x1 + [2] x2 + [1]         
                p(c_32) = [4]                           
                p(c_33) = [1]                           
        
        Following rules are strictly oriented:
        U31#(tt(),V2) = [4] V2 + [2]                  
                      > [4] V2 + [1]                  
                      = c_11(isNatKind#(activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V1 + [4] V2 + [0]                                                    
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V1 + [4] V2 + [0]                                                    
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V2 + [0]                                                             
                                   =  isNatKind#(activate(V2))                                                 
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V1 + [4] V2 + [0]                                                    
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))                  
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V2 + [0]                                                             
                                   =  isNatKind#(activate(V2))                                                 
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V2 + [0]                                                             
                                   =  U15#(isNat(activate(V1)),activate(V2))                                   
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                                    
                                   >= [4] V1 + [0]                                                             
                                   =  isNat#(activate(V1))                                                     
        
                     U15#(tt(),V2) =  [4] V2 + [0]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
                     U15#(tt(),V2) =  [4] V2 + [0]                                                             
                                   >= [4] V2 + [0]                                                             
                                   =  isNat#(activate(V2))                                                     
        
                     U21#(tt(),V1) =  [4] V1 + [0]                                                             
                                   >= [4] V1 + [0]                                                             
                                   =  U22#(isNatKind(activate(V1)),activate(V1))                               
        
                     U21#(tt(),V1) =  [4] V1 + [0]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U21#(tt(),V1) =  [4] V1 + [0]                                                             
                                   >= [4] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
                     U22#(tt(),V1) =  [4] V1 + [0]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                     U22#(tt(),V1) =  [4] V1 + [0]                                                             
                                   >= [4] V1 + [0]                                                             
                                   =  isNat#(activate(V1))                                                     
        
                      U51#(tt(),N) =  [6] N + [0]                                                              
                                   >= [4] N + [0]                                                              
                                   =  U52#(isNatKind(activate(N)),activate(N))                                 
        
                      U51#(tt(),N) =  [6] N + [0]                                                              
                                   >= [4] N + [0]                                                              
                                   =  isNatKind#(activate(N))                                                  
        
                      U52#(tt(),N) =  [4] N + [0]                                                              
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U61#(tt(),M,N) =  [5] M + [4] N + [1]                                                      
                                   >= [1] M + [4] N + [1]                                                      
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))                     
        
                    U61#(tt(),M,N) =  [5] M + [4] N + [1]                                                      
                                   >= [4] M + [0]                                                              
                                   =  isNatKind#(activate(M))                                                  
        
                    U62#(tt(),M,N) =  [1] M + [4] N + [1]                                                      
                                   >= [4] N + [0]                                                              
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))                         
        
                    U62#(tt(),M,N) =  [1] M + [4] N + [1]                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U62#(tt(),M,N) =  [1] M + [4] N + [1]                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U62#(tt(),M,N) =  [1] M + [4] N + [1]                                                      
                                   >= [4] N + [0]                                                              
                                   =  isNat#(activate(N))                                                      
        
                    U63#(tt(),M,N) =  [4] N + [0]                                                              
                                   >= [0]                                                                      
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))                     
        
                    U63#(tt(),M,N) =  [4] N + [0]                                                              
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U63#(tt(),M,N) =  [4] N + [0]                                                              
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
                    U63#(tt(),M,N) =  [4] N + [0]                                                              
                                   >= [4] N + [0]                                                              
                                   =  isNatKind#(activate(N))                                                  
        
                    U64#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(M)                                                             
        
                    U64#(tt(),M,N) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  activate#(N)                                                             
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                                    
                                   >= [4] V1 + [4] V2 + [0]                                                    
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))                  
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                                    
                                   >= [0]                                                                      
                                   =  activate#(V2)                                                            
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                                    
                                   >= [4] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
                  isNat#(n__s(V1)) =  [4] V1 + [0]                                                             
                                   >= [4] V1 + [0]                                                             
                                   =  U21#(isNatKind(activate(V1)),activate(V1))                               
        
                  isNat#(n__s(V1)) =  [4] V1 + [0]                                                             
                                   >= [0]                                                                      
                                   =  activate#(V1)                                                            
        
                  isNat#(n__s(V1)) =  [4] V1 + [0]                                                             
                                   >= [4] V1 + [0]                                                             
                                   =  isNatKind#(activate(V1))                                                 
        
        isNatKind#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                                    
                                   >= [4] V1 + [4] V2 + [8]                                                    
                                   =  c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
              isNatKind#(n__s(V1)) =  [4] V1 + [0]                                                             
                                   >= [4] V1 + [0]                                                             
                                   =  c_29(isNatKind#(activate(V1)))                                           
        
                               0() =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  n__0()                                                                   
        
                       U51(tt(),N) =  [1] N + [2]                                                              
                                   >= [1] N + [2]                                                              
                                   =  U52(isNatKind(activate(N)),activate(N))                                  
        
                       U52(tt(),N) =  [1] N + [2]                                                              
                                   >= [1] N + [0]                                                              
                                   =  activate(N)                                                              
        
                     U61(tt(),M,N) =  [1] M + [1] N + [2]                                                      
                                   >= [1] M + [1] N + [2]                                                      
                                   =  U62(isNatKind(activate(M)),activate(M),activate(N))                      
        
                     U62(tt(),M,N) =  [1] M + [1] N + [2]                                                      
                                   >= [1] M + [1] N + [2]                                                      
                                   =  U63(isNat(activate(N)),activate(M),activate(N))                          
        
                     U63(tt(),M,N) =  [1] M + [1] N + [2]                                                      
                                   >= [1] M + [1] N + [2]                                                      
                                   =  U64(isNatKind(activate(N)),activate(M),activate(N))                      
        
                     U64(tt(),M,N) =  [1] M + [1] N + [2]                                                      
                                   >= [1] M + [1] N + [2]                                                      
                                   =  s(plus(activate(N),activate(M)))                                         
        
                       activate(X) =  [1] X + [0]                                                              
                                   >= [1] X + [0]                                                              
                                   =  X                                                                        
        
                  activate(n__0()) =  [0]                                                                      
                                   >= [0]                                                                      
                                   =  0()                                                                      
        
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                                    
                                   >= [1] X1 + [1] X2 + [2]                                                    
                                   =  plus(activate(X1),activate(X2))                                          
        
                 activate(n__s(X)) =  [1] X + [0]                                                              
                                   >= [1] X + [0]                                                              
                                   =  s(activate(X))                                                           
        
                       plus(N,0()) =  [1] N + [2]                                                              
                                   >= [1] N + [2]                                                              
                                   =  U51(isNat(N),N)                                                          
        
                      plus(N,s(M)) =  [1] M + [1] N + [2]                                                      
                                   >= [1] M + [1] N + [2]                                                      
                                   =  U61(isNat(M),M,N)                                                        
        
                       plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                                    
                                   >= [1] X1 + [1] X2 + [2]                                                    
                                   =  n__plus(X1,X2)                                                           
        
                              s(X) =  [1] X + [0]                                                              
                                   >= [1] X + [0]                                                              
                                   =  n__s(X)                                                                  
        
*** Step 6.b:1.a:10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/1,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/2,c_29/1,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 6.b:1.b:1: RemoveHeads WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(activate#(X))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNatKind#(activate(V2))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> activate#(N)
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> activate#(M)
            U61#(tt(),M,N) -> activate#(N)
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
            isNatKind#(n__plus(V1,V2)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> activate#(V2)
            isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNatKind#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
           -->_2 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_2 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        2:S:activate#(n__s(X)) -> c_23(activate#(X))
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        3:W:U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
           -->_1 U12#(tt(),V1,V2) -> isNatKind#(activate(V2)):10
           -->_1 U12#(tt(),V1,V2) -> activate#(V2):9
           -->_1 U12#(tt(),V1,V2) -> activate#(V1):8
           -->_1 U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)):7
        
        4:W:U11#(tt(),V1,V2) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        5:W:U11#(tt(),V1,V2) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        6:W:U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        7:W:U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
           -->_1 U13#(tt(),V1,V2) -> isNatKind#(activate(V2)):14
           -->_1 U13#(tt(),V1,V2) -> activate#(V2):13
           -->_1 U13#(tt(),V1,V2) -> activate#(V1):12
           -->_1 U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)):11
        
        8:W:U12#(tt(),V1,V2) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        9:W:U12#(tt(),V1,V2) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        10:W:U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        11:W:U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
           -->_1 U14#(tt(),V1,V2) -> isNat#(activate(V1)):18
           -->_1 U14#(tt(),V1,V2) -> activate#(V2):17
           -->_1 U14#(tt(),V1,V2) -> activate#(V1):16
           -->_1 U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)):15
        
        12:W:U13#(tt(),V1,V2) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        13:W:U13#(tt(),V1,V2) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        14:W:U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        15:W:U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
           -->_1 U15#(tt(),V2) -> isNat#(activate(V2)):20
           -->_1 U15#(tt(),V2) -> activate#(V2):19
        
        16:W:U14#(tt(),V1,V2) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        17:W:U14#(tt(),V1,V2) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        18:W:U14#(tt(),V1,V2) -> isNat#(activate(V1))
           -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):52
           -->_1 isNat#(n__s(V1)) -> activate#(V1):51
           -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
           -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):48
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):47
           -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):46
        
        19:W:U15#(tt(),V2) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        20:W:U15#(tt(),V2) -> isNat#(activate(V2))
           -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):52
           -->_1 isNat#(n__s(V1)) -> activate#(V1):51
           -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
           -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):48
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):47
           -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):46
        
        21:W:U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
           -->_1 U22#(tt(),V1) -> isNat#(activate(V1)):25
           -->_1 U22#(tt(),V1) -> activate#(V1):24
        
        22:W:U21#(tt(),V1) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        23:W:U21#(tt(),V1) -> isNatKind#(activate(V1))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        24:W:U22#(tt(),V1) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        25:W:U22#(tt(),V1) -> isNat#(activate(V1))
           -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):52
           -->_1 isNat#(n__s(V1)) -> activate#(V1):51
           -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
           -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):48
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):47
           -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):46
        
        26:W:U31#(tt(),V2) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        27:W:U31#(tt(),V2) -> isNatKind#(activate(V2))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        28:W:U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
           -->_1 U52#(tt(),N) -> activate#(N):31
        
        29:W:U51#(tt(),N) -> activate#(N)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        30:W:U51#(tt(),N) -> isNatKind#(activate(N))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        31:W:U52#(tt(),N) -> activate#(N)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        32:W:U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
           -->_1 U62#(tt(),M,N) -> isNat#(activate(N)):39
           -->_1 U62#(tt(),M,N) -> activate#(N):38
           -->_1 U62#(tt(),M,N) -> activate#(M):37
           -->_1 U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)):36
        
        33:W:U61#(tt(),M,N) -> activate#(M)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        34:W:U61#(tt(),M,N) -> activate#(N)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        35:W:U61#(tt(),M,N) -> isNatKind#(activate(M))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        36:W:U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
           -->_1 U63#(tt(),M,N) -> isNatKind#(activate(N)):43
           -->_1 U63#(tt(),M,N) -> activate#(N):42
           -->_1 U63#(tt(),M,N) -> activate#(M):41
           -->_1 U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)):40
        
        37:W:U62#(tt(),M,N) -> activate#(M)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        38:W:U62#(tt(),M,N) -> activate#(N)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        39:W:U62#(tt(),M,N) -> isNat#(activate(N))
           -->_1 isNat#(n__s(V1)) -> isNatKind#(activate(V1)):52
           -->_1 isNat#(n__s(V1)) -> activate#(V1):51
           -->_1 isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)):50
           -->_1 isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):49
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):48
           -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):47
           -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)):46
        
        40:W:U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
           -->_1 U64#(tt(),M,N) -> activate#(N):45
           -->_1 U64#(tt(),M,N) -> activate#(M):44
        
        41:W:U63#(tt(),M,N) -> activate#(M)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        42:W:U63#(tt(),M,N) -> activate#(N)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        43:W:U63#(tt(),M,N) -> isNatKind#(activate(N))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        44:W:U64#(tt(),M,N) -> activate#(M)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        45:W:U64#(tt(),M,N) -> activate#(N)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        46:W:isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
           -->_1 U11#(tt(),V1,V2) -> isNatKind#(activate(V1)):6
           -->_1 U11#(tt(),V1,V2) -> activate#(V2):5
           -->_1 U11#(tt(),V1,V2) -> activate#(V1):4
           -->_1 U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)):3
        
        47:W:isNat#(n__plus(V1,V2)) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        48:W:isNat#(n__plus(V1,V2)) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        49:W:isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        50:W:isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
           -->_1 U21#(tt(),V1) -> isNatKind#(activate(V1)):23
           -->_1 U21#(tt(),V1) -> activate#(V1):22
           -->_1 U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)):21
        
        51:W:isNat#(n__s(V1)) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        52:W:isNat#(n__s(V1)) -> isNatKind#(activate(V1))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        53:W:isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
           -->_1 U31#(tt(),V2) -> isNatKind#(activate(V2)):27
           -->_1 U31#(tt(),V2) -> activate#(V2):26
        
        54:W:isNatKind#(n__plus(V1,V2)) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        55:W:isNatKind#(n__plus(V1,V2)) -> activate#(V2)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        56:W:isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        57:W:isNatKind#(n__s(V1)) -> activate#(V1)
           -->_1 activate#(n__s(X)) -> c_23(activate#(X)):2
           -->_1 activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2)):1
        
        58:W:isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
           -->_1 isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)):58
           -->_1 isNatKind#(n__s(V1)) -> activate#(V1):57
           -->_1 isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)):56
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V2):55
           -->_1 isNatKind#(n__plus(V1,V2)) -> activate#(V1):54
           -->_1 isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)):53
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(29,U51#(tt(),N) -> activate#(N)),(33,U61#(tt(),M,N) -> activate#(M)),(34,U61#(tt(),M,N) -> activate#(N))]
*** Step 6.b:1.b:2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(activate#(X))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNatKind#(activate(V2))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
            isNatKind#(n__plus(V1,V2)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> activate#(V2)
            isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNatKind#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_22) = {1,2},
          uargs(c_23) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                 p(U11) = [2] x1 + [1] x3 + [6]                  
                 p(U12) = [1] x3 + [0]                           
                 p(U13) = [5] x1 + [2] x3 + [1]                  
                 p(U14) = [7] x2 + [4]                           
                 p(U15) = [2] x1 + [0]                           
                 p(U16) = [0]                                    
                 p(U21) = [4] x2 + [0]                           
                 p(U22) = [2] x1 + [0]                           
                 p(U23) = [1] x1 + [7]                           
                 p(U31) = [1] x1 + [2]                           
                 p(U32) = [0]                                    
                 p(U41) = [1]                                    
                 p(U51) = [1] x2 + [0]                           
                 p(U52) = [1] x2 + [0]                           
                 p(U61) = [1] x2 + [1] x3 + [1]                  
                 p(U62) = [1] x2 + [1] x3 + [1]                  
                 p(U63) = [1] x2 + [1] x3 + [1]                  
                 p(U64) = [1] x2 + [1] x3 + [1]                  
            p(activate) = [1] x1 + [0]                           
               p(isNat) = [0]                                    
           p(isNatKind) = [2] x1 + [1]                           
                p(n__0) = [0]                                    
             p(n__plus) = [1] x1 + [1] x2 + [0]                  
                p(n__s) = [1] x1 + [1]                           
                p(plus) = [1] x1 + [1] x2 + [0]                  
                   p(s) = [1] x1 + [1]                           
                  p(tt) = [0]                                    
                  p(0#) = [2]                                    
                p(U11#) = [2] x2 + [2] x3 + [1]                  
                p(U12#) = [2] x2 + [2] x3 + [1]                  
                p(U13#) = [2] x2 + [2] x3 + [1]                  
                p(U14#) = [2] x2 + [2] x3 + [1]                  
                p(U15#) = [2] x2 + [1]                           
                p(U16#) = [2] x1 + [1]                           
                p(U21#) = [2] x2 + [1]                           
                p(U22#) = [2] x2 + [1]                           
                p(U23#) = [0]                                    
                p(U31#) = [2] x2 + [0]                           
                p(U32#) = [1] x1 + [1]                           
                p(U41#) = [4] x1 + [1]                           
                p(U51#) = [1] x1 + [4] x2 + [0]                  
                p(U52#) = [2] x2 + [0]                           
                p(U61#) = [3] x2 + [4] x3 + [1]                  
                p(U62#) = [2] x2 + [2] x3 + [1]                  
                p(U63#) = [2] x2 + [2] x3 + [0]                  
                p(U64#) = [2] x2 + [2] x3 + [0]                  
           p(activate#) = [2] x1 + [0]                           
              p(isNat#) = [2] x1 + [1]                           
          p(isNatKind#) = [2] x1 + [0]                           
               p(plus#) = [1] x2 + [4]                           
                  p(s#) = [0]                                    
                 p(c_1) = [1]                                    
                 p(c_2) = [4] x2 + [1] x5 + [1]                  
                 p(c_3) = [1] x1 + [1] x4 + [1] x5 + [0]         
                 p(c_4) = [1] x4 + [1] x5 + [1]                  
                 p(c_5) = [1] x1 + [2] x3 + [1]                  
                 p(c_6) = [2] x1 + [1] x2 + [1]                  
                 p(c_7) = [0]                                    
                 p(c_8) = [1] x2 + [4]                           
                 p(c_9) = [1]                                    
                p(c_10) = [4]                                    
                p(c_11) = [4] x1 + [0]                           
                p(c_12) = [4]                                    
                p(c_13) = [0]                                    
                p(c_14) = [1] x1 + [1] x2 + [1] x3 + [1]         
                p(c_15) = [1] x1 + [2]                           
                p(c_16) = [1] x1 + [1] x2 + [2] x5 + [0]         
                p(c_17) = [2] x1 + [1] x2 + [1] x3 + [0]         
                p(c_18) = [1] x1 + [2] x2 + [1] x3 + [1] x4 + [0]
                p(c_19) = [0]                                    
                p(c_20) = [0]                                    
                p(c_21) = [2]                                    
                p(c_22) = [1] x1 + [1] x2 + [0]                  
                p(c_23) = [1] x1 + [0]                           
                p(c_24) = [2]                                    
                p(c_25) = [1] x3 + [0]                           
                p(c_26) = [1] x1 + [1] x2 + [2] x3 + [1] x4 + [1]
                p(c_27) = [1]                                    
                p(c_28) = [1] x1 + [2] x2 + [4] x3 + [2] x4 + [1]
                p(c_29) = [1] x1 + [0]                           
                p(c_30) = [2] x1 + [4] x2 + [1]                  
                p(c_31) = [4] x1 + [1]                           
                p(c_32) = [1]                                    
                p(c_33) = [0]                                    
        
        Following rules are strictly oriented:
        activate#(n__s(X)) = [2] X + [2]       
                           > [2] X + [0]       
                           = c_23(activate#(X))
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [2] V2 + [1]                                  
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
        
                  U11#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U11#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U11#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                  U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [2] V2 + [1]                                  
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
        
                  U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U12#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  isNatKind#(activate(V2))                               
        
                  U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [2] V2 + [1]                                  
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
        
                  U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U13#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  isNatKind#(activate(V2))                               
        
                  U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [1]                                           
                                   =  U15#(isNat(activate(V1)),activate(V2))                 
        
                  U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U14#(tt(),V1,V2) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [1]                                           
                                   =  isNat#(activate(V1))                                   
        
                     U15#(tt(),V2) =  [2] V2 + [1]                                           
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                     U15#(tt(),V2) =  [2] V2 + [1]                                           
                                   >= [2] V2 + [1]                                           
                                   =  isNat#(activate(V2))                                   
        
                     U21#(tt(),V1) =  [2] V1 + [1]                                           
                                   >= [2] V1 + [1]                                           
                                   =  U22#(isNatKind(activate(V1)),activate(V1))             
        
                     U21#(tt(),V1) =  [2] V1 + [1]                                           
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                     U21#(tt(),V1) =  [2] V1 + [1]                                           
                                   >= [2] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                     U22#(tt(),V1) =  [2] V1 + [1]                                           
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                     U22#(tt(),V1) =  [2] V1 + [1]                                           
                                   >= [2] V1 + [1]                                           
                                   =  isNat#(activate(V1))                                   
        
                     U31#(tt(),V2) =  [2] V2 + [0]                                           
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                     U31#(tt(),V2) =  [2] V2 + [0]                                           
                                   >= [2] V2 + [0]                                           
                                   =  isNatKind#(activate(V2))                               
        
                      U51#(tt(),N) =  [4] N + [0]                                            
                                   >= [2] N + [0]                                            
                                   =  U52#(isNatKind(activate(N)),activate(N))               
        
                      U51#(tt(),N) =  [4] N + [0]                                            
                                   >= [2] N + [0]                                            
                                   =  isNatKind#(activate(N))                                
        
                      U52#(tt(),N) =  [2] N + [0]                                            
                                   >= [2] N + [0]                                            
                                   =  activate#(N)                                           
        
                    U61#(tt(),M,N) =  [3] M + [4] N + [1]                                    
                                   >= [2] M + [2] N + [1]                                    
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))   
        
                    U61#(tt(),M,N) =  [3] M + [4] N + [1]                                    
                                   >= [2] M + [0]                                            
                                   =  isNatKind#(activate(M))                                
        
                    U62#(tt(),M,N) =  [2] M + [2] N + [1]                                    
                                   >= [2] M + [2] N + [0]                                    
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))       
        
                    U62#(tt(),M,N) =  [2] M + [2] N + [1]                                    
                                   >= [2] M + [0]                                            
                                   =  activate#(M)                                           
        
                    U62#(tt(),M,N) =  [2] M + [2] N + [1]                                    
                                   >= [2] N + [0]                                            
                                   =  activate#(N)                                           
        
                    U62#(tt(),M,N) =  [2] M + [2] N + [1]                                    
                                   >= [2] N + [1]                                            
                                   =  isNat#(activate(N))                                    
        
                    U63#(tt(),M,N) =  [2] M + [2] N + [0]                                    
                                   >= [2] M + [2] N + [0]                                    
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))   
        
                    U63#(tt(),M,N) =  [2] M + [2] N + [0]                                    
                                   >= [2] M + [0]                                            
                                   =  activate#(M)                                           
        
                    U63#(tt(),M,N) =  [2] M + [2] N + [0]                                    
                                   >= [2] N + [0]                                            
                                   =  activate#(N)                                           
        
                    U63#(tt(),M,N) =  [2] M + [2] N + [0]                                    
                                   >= [2] N + [0]                                            
                                   =  isNatKind#(activate(N))                                
        
                    U64#(tt(),M,N) =  [2] M + [2] N + [0]                                    
                                   >= [2] M + [0]                                            
                                   =  activate#(M)                                           
        
                    U64#(tt(),M,N) =  [2] M + [2] N + [0]                                    
                                   >= [2] N + [0]                                            
                                   =  activate#(N)                                           
        
         activate#(n__plus(X1,X2)) =  [2] X1 + [2] X2 + [0]                                  
                                   >= [2] X1 + [2] X2 + [0]                                  
                                   =  c_22(activate#(X1),activate#(X2))                      
        
            isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [2] V2 + [1]                                  
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
        
            isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
            isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
            isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [1]                                  
                                   >= [2] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                  isNat#(n__s(V1)) =  [2] V1 + [3]                                           
                                   >= [2] V1 + [1]                                           
                                   =  U21#(isNatKind(activate(V1)),activate(V1))             
        
                  isNat#(n__s(V1)) =  [2] V1 + [3]                                           
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  isNat#(n__s(V1)) =  [2] V1 + [3]                                           
                                   >= [2] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
        isNatKind#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [0]                                  
                                   >= [2] V2 + [0]                                           
                                   =  U31#(isNatKind(activate(V1)),activate(V2))             
        
        isNatKind#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [0]                                  
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
        isNatKind#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [0]                                  
                                   >= [2] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
        isNatKind#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [0]                                  
                                   >= [2] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
              isNatKind#(n__s(V1)) =  [2] V1 + [2]                                           
                                   >= [2] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
              isNatKind#(n__s(V1)) =  [2] V1 + [2]                                           
                                   >= [2] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                               0() =  [0]                                                    
                                   >= [0]                                                    
                                   =  n__0()                                                 
        
                       U51(tt(),N) =  [1] N + [0]                                            
                                   >= [1] N + [0]                                            
                                   =  U52(isNatKind(activate(N)),activate(N))                
        
                       U52(tt(),N) =  [1] N + [0]                                            
                                   >= [1] N + [0]                                            
                                   =  activate(N)                                            
        
                     U61(tt(),M,N) =  [1] M + [1] N + [1]                                    
                                   >= [1] M + [1] N + [1]                                    
                                   =  U62(isNatKind(activate(M)),activate(M),activate(N))    
        
                     U62(tt(),M,N) =  [1] M + [1] N + [1]                                    
                                   >= [1] M + [1] N + [1]                                    
                                   =  U63(isNat(activate(N)),activate(M),activate(N))        
        
                     U63(tt(),M,N) =  [1] M + [1] N + [1]                                    
                                   >= [1] M + [1] N + [1]                                    
                                   =  U64(isNatKind(activate(N)),activate(M),activate(N))    
        
                     U64(tt(),M,N) =  [1] M + [1] N + [1]                                    
                                   >= [1] M + [1] N + [1]                                    
                                   =  s(plus(activate(N),activate(M)))                       
        
                       activate(X) =  [1] X + [0]                                            
                                   >= [1] X + [0]                                            
                                   =  X                                                      
        
                  activate(n__0()) =  [0]                                                    
                                   >= [0]                                                    
                                   =  0()                                                    
        
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                  
                                   >= [1] X1 + [1] X2 + [0]                                  
                                   =  plus(activate(X1),activate(X2))                        
        
                 activate(n__s(X)) =  [1] X + [1]                                            
                                   >= [1] X + [1]                                            
                                   =  s(activate(X))                                         
        
                       plus(N,0()) =  [1] N + [0]                                            
                                   >= [1] N + [0]                                            
                                   =  U51(isNat(N),N)                                        
        
                      plus(N,s(M)) =  [1] M + [1] N + [1]                                    
                                   >= [1] M + [1] N + [1]                                    
                                   =  U61(isNat(M),M,N)                                      
        
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                  
                                   >= [1] X1 + [1] X2 + [0]                                  
                                   =  n__plus(X1,X2)                                         
        
                              s(X) =  [1] X + [1]                                            
                                   >= [1] X + [1]                                            
                                   =  n__s(X)                                                
        
*** Step 6.b:1.b:3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNatKind#(activate(V2))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            activate#(n__s(X)) -> c_23(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
            isNatKind#(n__plus(V1,V2)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> activate#(V2)
            isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNatKind#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_22) = {1,2},
          uargs(c_23) = {1}
        
        Following symbols are considered usable:
          {0,U51,U52,U61,U62,U63,U64,activate,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                 p(U11) = [2]                                    
                 p(U12) = [1] x1 + [4] x2 + [4] x3 + [4]         
                 p(U13) = [4] x3 + [0]                           
                 p(U14) = [0]                                    
                 p(U15) = [0]                                    
                 p(U16) = [2] x1 + [0]                           
                 p(U21) = [0]                                    
                 p(U22) = [1] x1 + [4]                           
                 p(U23) = [1] x1 + [2]                           
                 p(U31) = [1]                                    
                 p(U32) = [0]                                    
                 p(U41) = [0]                                    
                 p(U51) = [1] x2 + [0]                           
                 p(U52) = [1] x2 + [0]                           
                 p(U61) = [1] x2 + [1] x3 + [3]                  
                 p(U62) = [1] x2 + [1] x3 + [3]                  
                 p(U63) = [1] x2 + [1] x3 + [3]                  
                 p(U64) = [1] x2 + [1] x3 + [3]                  
            p(activate) = [1] x1 + [0]                           
               p(isNat) = [0]                                    
           p(isNatKind) = [4] x1 + [0]                           
                p(n__0) = [0]                                    
             p(n__plus) = [1] x1 + [1] x2 + [2]                  
                p(n__s) = [1] x1 + [1]                           
                p(plus) = [1] x1 + [1] x2 + [2]                  
                   p(s) = [1] x1 + [1]                           
                  p(tt) = [0]                                    
                  p(0#) = [0]                                    
                p(U11#) = [4] x2 + [4] x3 + [0]                  
                p(U12#) = [4] x2 + [4] x3 + [0]                  
                p(U13#) = [4] x2 + [4] x3 + [0]                  
                p(U14#) = [4] x2 + [4] x3 + [0]                  
                p(U15#) = [4] x2 + [0]                           
                p(U16#) = [2] x1 + [1]                           
                p(U21#) = [4] x2 + [0]                           
                p(U22#) = [4] x2 + [0]                           
                p(U23#) = [2] x1 + [1]                           
                p(U31#) = [4] x2 + [0]                           
                p(U32#) = [1] x1 + [1]                           
                p(U41#) = [4]                                    
                p(U51#) = [1] x1 + [5] x2 + [4]                  
                p(U52#) = [4] x2 + [2]                           
                p(U61#) = [7] x2 + [4] x3 + [4]                  
                p(U62#) = [4] x2 + [4] x3 + [4]                  
                p(U63#) = [4] x2 + [4] x3 + [0]                  
                p(U64#) = [4] x2 + [4] x3 + [0]                  
           p(activate#) = [4] x1 + [0]                           
              p(isNat#) = [4] x1 + [0]                           
          p(isNatKind#) = [4] x1 + [0]                           
               p(plus#) = [4]                                    
                  p(s#) = [2] x1 + [0]                           
                 p(c_1) = [2]                                    
                 p(c_2) = [1] x3 + [1] x4 + [0]                  
                 p(c_3) = [2] x1 + [4] x2 + [1] x3 + [2]         
                 p(c_4) = [2] x3 + [0]                           
                 p(c_5) = [0]                                    
                 p(c_6) = [1] x1 + [1] x2 + [1]                  
                 p(c_7) = [1]                                    
                 p(c_8) = [1] x1 + [2] x3 + [0]                  
                 p(c_9) = [1] x1 + [4] x2 + [0]                  
                p(c_10) = [0]                                    
                p(c_11) = [1] x1 + [1]                           
                p(c_12) = [1]                                    
                p(c_13) = [0]                                    
                p(c_14) = [2] x2 + [0]                           
                p(c_15) = [0]                                    
                p(c_16) = [1] x1 + [1] x2 + [2] x4 + [2] x5 + [1]
                p(c_17) = [1] x5 + [4]                           
                p(c_18) = [2] x1 + [4] x4 + [1]                  
                p(c_19) = [4] x2 + [4]                           
                p(c_20) = [2]                                    
                p(c_21) = [1] x1 + [1]                           
                p(c_22) = [1] x1 + [1] x2 + [0]                  
                p(c_23) = [1] x1 + [4]                           
                p(c_24) = [1]                                    
                p(c_25) = [4]                                    
                p(c_26) = [4] x3 + [0]                           
                p(c_27) = [1]                                    
                p(c_28) = [1] x1 + [2] x2 + [0]                  
                p(c_29) = [1] x2 + [4]                           
                p(c_30) = [4] x1 + [0]                           
                p(c_31) = [4]                                    
                p(c_32) = [0]                                    
                p(c_33) = [1]                                    
        
        Following rules are strictly oriented:
        activate#(n__plus(X1,X2)) = [4] X1 + [4] X2 + [8]            
                                  > [4] X1 + [4] X2 + [0]            
                                  = c_22(activate#(X1),activate#(X2))
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [4] V2 + [0]                                  
                                   =  U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
        
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [4] V2 + [0]                                  
                                   =  U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  isNatKind#(activate(V2))                               
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [4] V2 + [0]                                  
                                   =  U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  isNatKind#(activate(V2))                               
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  U15#(isNat(activate(V1)),activate(V2))                 
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                  U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                  
                                   >= [4] V1 + [0]                                           
                                   =  isNat#(activate(V1))                                   
        
                     U15#(tt(),V2) =  [4] V2 + [0]                                           
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                     U15#(tt(),V2) =  [4] V2 + [0]                                           
                                   >= [4] V2 + [0]                                           
                                   =  isNat#(activate(V2))                                   
        
                     U21#(tt(),V1) =  [4] V1 + [0]                                           
                                   >= [4] V1 + [0]                                           
                                   =  U22#(isNatKind(activate(V1)),activate(V1))             
        
                     U21#(tt(),V1) =  [4] V1 + [0]                                           
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                     U21#(tt(),V1) =  [4] V1 + [0]                                           
                                   >= [4] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                     U22#(tt(),V1) =  [4] V1 + [0]                                           
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                     U22#(tt(),V1) =  [4] V1 + [0]                                           
                                   >= [4] V1 + [0]                                           
                                   =  isNat#(activate(V1))                                   
        
                     U31#(tt(),V2) =  [4] V2 + [0]                                           
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
                     U31#(tt(),V2) =  [4] V2 + [0]                                           
                                   >= [4] V2 + [0]                                           
                                   =  isNatKind#(activate(V2))                               
        
                      U51#(tt(),N) =  [5] N + [4]                                            
                                   >= [4] N + [2]                                            
                                   =  U52#(isNatKind(activate(N)),activate(N))               
        
                      U51#(tt(),N) =  [5] N + [4]                                            
                                   >= [4] N + [0]                                            
                                   =  isNatKind#(activate(N))                                
        
                      U52#(tt(),N) =  [4] N + [2]                                            
                                   >= [4] N + [0]                                            
                                   =  activate#(N)                                           
        
                    U61#(tt(),M,N) =  [7] M + [4] N + [4]                                    
                                   >= [4] M + [4] N + [4]                                    
                                   =  U62#(isNatKind(activate(M)),activate(M),activate(N))   
        
                    U61#(tt(),M,N) =  [7] M + [4] N + [4]                                    
                                   >= [4] M + [0]                                            
                                   =  isNatKind#(activate(M))                                
        
                    U62#(tt(),M,N) =  [4] M + [4] N + [4]                                    
                                   >= [4] M + [4] N + [0]                                    
                                   =  U63#(isNat(activate(N)),activate(M),activate(N))       
        
                    U62#(tt(),M,N) =  [4] M + [4] N + [4]                                    
                                   >= [4] M + [0]                                            
                                   =  activate#(M)                                           
        
                    U62#(tt(),M,N) =  [4] M + [4] N + [4]                                    
                                   >= [4] N + [0]                                            
                                   =  activate#(N)                                           
        
                    U62#(tt(),M,N) =  [4] M + [4] N + [4]                                    
                                   >= [4] N + [0]                                            
                                   =  isNat#(activate(N))                                    
        
                    U63#(tt(),M,N) =  [4] M + [4] N + [0]                                    
                                   >= [4] M + [4] N + [0]                                    
                                   =  U64#(isNatKind(activate(N)),activate(M),activate(N))   
        
                    U63#(tt(),M,N) =  [4] M + [4] N + [0]                                    
                                   >= [4] M + [0]                                            
                                   =  activate#(M)                                           
        
                    U63#(tt(),M,N) =  [4] M + [4] N + [0]                                    
                                   >= [4] N + [0]                                            
                                   =  activate#(N)                                           
        
                    U63#(tt(),M,N) =  [4] M + [4] N + [0]                                    
                                   >= [4] N + [0]                                            
                                   =  isNatKind#(activate(N))                                
        
                    U64#(tt(),M,N) =  [4] M + [4] N + [0]                                    
                                   >= [4] M + [0]                                            
                                   =  activate#(M)                                           
        
                    U64#(tt(),M,N) =  [4] M + [4] N + [0]                                    
                                   >= [4] N + [0]                                            
                                   =  activate#(N)                                           
        
                activate#(n__s(X)) =  [4] X + [4]                                            
                                   >= [4] X + [4]                                            
                                   =  c_23(activate#(X))                                     
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V1 + [4] V2 + [0]                                  
                                   =  U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
            isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                  isNat#(n__s(V1)) =  [4] V1 + [4]                                           
                                   >= [4] V1 + [0]                                           
                                   =  U21#(isNatKind(activate(V1)),activate(V1))             
        
                  isNat#(n__s(V1)) =  [4] V1 + [4]                                           
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
                  isNat#(n__s(V1)) =  [4] V1 + [4]                                           
                                   >= [4] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
        isNatKind#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V2 + [0]                                           
                                   =  U31#(isNatKind(activate(V1)),activate(V2))             
        
        isNatKind#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
        isNatKind#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V2 + [0]                                           
                                   =  activate#(V2)                                          
        
        isNatKind#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                                  
                                   >= [4] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
              isNatKind#(n__s(V1)) =  [4] V1 + [4]                                           
                                   >= [4] V1 + [0]                                           
                                   =  activate#(V1)                                          
        
              isNatKind#(n__s(V1)) =  [4] V1 + [4]                                           
                                   >= [4] V1 + [0]                                           
                                   =  isNatKind#(activate(V1))                               
        
                               0() =  [0]                                                    
                                   >= [0]                                                    
                                   =  n__0()                                                 
        
                       U51(tt(),N) =  [1] N + [0]                                            
                                   >= [1] N + [0]                                            
                                   =  U52(isNatKind(activate(N)),activate(N))                
        
                       U52(tt(),N) =  [1] N + [0]                                            
                                   >= [1] N + [0]                                            
                                   =  activate(N)                                            
        
                     U61(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                   >= [1] M + [1] N + [3]                                    
                                   =  U62(isNatKind(activate(M)),activate(M),activate(N))    
        
                     U62(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                   >= [1] M + [1] N + [3]                                    
                                   =  U63(isNat(activate(N)),activate(M),activate(N))        
        
                     U63(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                   >= [1] M + [1] N + [3]                                    
                                   =  U64(isNatKind(activate(N)),activate(M),activate(N))    
        
                     U64(tt(),M,N) =  [1] M + [1] N + [3]                                    
                                   >= [1] M + [1] N + [3]                                    
                                   =  s(plus(activate(N),activate(M)))                       
        
                       activate(X) =  [1] X + [0]                                            
                                   >= [1] X + [0]                                            
                                   =  X                                                      
        
                  activate(n__0()) =  [0]                                                    
                                   >= [0]                                                    
                                   =  0()                                                    
        
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                  
                                   >= [1] X1 + [1] X2 + [2]                                  
                                   =  plus(activate(X1),activate(X2))                        
        
                 activate(n__s(X)) =  [1] X + [1]                                            
                                   >= [1] X + [1]                                            
                                   =  s(activate(X))                                         
        
                       plus(N,0()) =  [1] N + [2]                                            
                                   >= [1] N + [0]                                            
                                   =  U51(isNat(N),N)                                        
        
                      plus(N,s(M)) =  [1] M + [1] N + [3]                                    
                                   >= [1] M + [1] N + [3]                                    
                                   =  U61(isNat(M),M,N)                                      
        
                       plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                  
                                   >= [1] X1 + [1] X2 + [2]                                  
                                   =  n__plus(X1,X2)                                         
        
                              s(X) =  [1] X + [1]                                            
                                   >= [1] X + [1]                                            
                                   =  n__s(X)                                                
        
*** Step 6.b:1.b:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
            U11#(tt(),V1,V2) -> activate#(V1)
            U11#(tt(),V1,V2) -> activate#(V2)
            U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
            U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U12#(tt(),V1,V2) -> activate#(V1)
            U12#(tt(),V1,V2) -> activate#(V2)
            U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13#(tt(),V1,V2) -> activate#(V1)
            U13#(tt(),V1,V2) -> activate#(V2)
            U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
            U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
            U14#(tt(),V1,V2) -> activate#(V1)
            U14#(tt(),V1,V2) -> activate#(V2)
            U14#(tt(),V1,V2) -> isNat#(activate(V1))
            U15#(tt(),V2) -> activate#(V2)
            U15#(tt(),V2) -> isNat#(activate(V2))
            U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
            U21#(tt(),V1) -> activate#(V1)
            U21#(tt(),V1) -> isNatKind#(activate(V1))
            U22#(tt(),V1) -> activate#(V1)
            U22#(tt(),V1) -> isNat#(activate(V1))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNatKind#(activate(V2))
            U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
            U51#(tt(),N) -> isNatKind#(activate(N))
            U52#(tt(),N) -> activate#(N)
            U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
            U61#(tt(),M,N) -> isNatKind#(activate(M))
            U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
            U62#(tt(),M,N) -> activate#(M)
            U62#(tt(),M,N) -> activate#(N)
            U62#(tt(),M,N) -> isNat#(activate(N))
            U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
            U63#(tt(),M,N) -> activate#(M)
            U63#(tt(),M,N) -> activate#(N)
            U63#(tt(),M,N) -> isNatKind#(activate(N))
            U64#(tt(),M,N) -> activate#(M)
            U64#(tt(),M,N) -> activate#(N)
            activate#(n__plus(X1,X2)) -> c_22(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_23(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNatKind#(activate(V1))
            isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
            isNatKind#(n__plus(V1,V2)) -> activate#(V1)
            isNatKind#(n__plus(V1,V2)) -> activate#(V2)
            isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
            isNatKind#(n__s(V1)) -> activate#(V1)
            isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/2,c_7/0,c_8/4
            ,c_9/2,c_10/0,c_11/2,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/2,c_20/0,c_21/1,c_22/2,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/2,c_30/2,c_31/2,c_32/0,c_33/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^3))