MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {fac,p,plus,times} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) p#(s(0())) -> c_2() p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,0()) -> c_4() plus#(x,s(y)) -> c_5(plus#(x,y)) times#(x,0()) -> c_6() times#(0(),y) -> c_7() times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) Weak DPs and mark the set of starting terms. * Step 2: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) p#(s(0())) -> c_2() p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,0()) -> c_4() plus#(x,s(y)) -> c_5(plus#(x,y)) times#(x,0()) -> c_6() times#(0(),y) -> c_7() times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2,4,6,7} by application of Pre({2,4,6,7}) = {1,3,5,8}. Here rules are labelled as follows: 1: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) 2: p#(s(0())) -> c_2() 3: p#(s(s(x))) -> c_3(p#(s(x))) 4: plus#(x,0()) -> c_4() 5: plus#(x,s(y)) -> c_5(plus#(x,y)) 6: times#(x,0()) -> c_6() 7: times#(0(),y) -> c_7() 8: times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) * Step 3: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak DPs: p#(s(0())) -> c_2() plus#(x,0()) -> c_4() times#(x,0()) -> c_6() times#(0(),y) -> c_7() - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) -->_1 times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)):4 -->_3 p#(s(s(x))) -> c_3(p#(s(x))):2 -->_1 times#(0(),y) -> c_7():8 -->_3 p#(s(0())) -> c_2():5 -->_2 fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))):1 2:S:p#(s(s(x))) -> c_3(p#(s(x))) -->_1 p#(s(0())) -> c_2():5 -->_1 p#(s(s(x))) -> c_3(p#(s(x))):2 3:S:plus#(x,s(y)) -> c_5(plus#(x,y)) -->_1 plus#(x,0()) -> c_4():6 -->_1 plus#(x,s(y)) -> c_5(plus#(x,y)):3 4:S:times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) -->_2 times#(0(),y) -> c_7():8 -->_2 times#(x,0()) -> c_6():7 -->_1 plus#(x,0()) -> c_4():6 -->_2 times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)):4 -->_1 plus#(x,s(y)) -> c_5(plus#(x,y)):3 5:W:p#(s(0())) -> c_2() 6:W:plus#(x,0()) -> c_4() 7:W:times#(x,0()) -> c_6() 8:W:times#(0(),y) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: p#(s(0())) -> c_2() 6: plus#(x,0()) -> c_4() 7: times#(x,0()) -> c_6() 8: times#(0(),y) -> c_7() * Step 4: DecomposeDG MAYBE + Considered Problem: - Strict DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) and a lower component p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) Further, following extension rules are added to the lower component. fac#(s(x)) -> fac#(p(s(x))) fac#(s(x)) -> p#(s(x)) fac#(s(x)) -> times#(fac(p(s(x))),s(x)) ** Step 4.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) The strictly oriented rules are moved into the weak component. *** Step 4.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 3, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_1) = {1,2} Following symbols are considered usable: {p,fac#,p#,plus#,times#} TcT has computed the following interpretation: p(0) = [1] [1] [1] p(fac) = [0 0 0] [0] [0 0 1] x1 + [1] [0 0 0] [0] p(p) = [1 1 0] [0] [1 0 0] x1 + [0] [0 0 0] [1] p(plus) = [0 0 1] [0 0 1] [1] [0 1 0] x1 + [1 0 1] x2 + [1] [0 0 0] [0 0 0] [0] p(s) = [0 1 0] [0] [0 1 0] x1 + [1] [0 0 0] [0] p(times) = [1 0 0] [0 0 0] [1] [0 1 0] x1 + [0 0 1] x2 + [1] [0 1 0] [0 0 0] [1] p(fac#) = [0 1 0] [0] [1 0 0] x1 + [1] [1 1 0] [1] p(p#) = [0 0 0] [1] [0 1 0] x1 + [0] [1 1 0] [0] p(plus#) = [0] [0] [0] p(times#) = [0 0 0] [0] [0 0 0] x2 + [0] [1 0 0] [1] p(c_1) = [1 0 0] [1 0 0] [0 0 0] [0] [0 0 0] x1 + [0 0 0] x2 + [0 1 0] x3 + [0] [0 0 0] [0 0 0] [0 0 1] [1] p(c_2) = [0] [0] [0] p(c_3) = [0] [0] [0] p(c_4) = [0] [0] [0] p(c_5) = [0] [0] [0] p(c_6) = [0] [0] [0] p(c_7) = [0] [0] [0] p(c_8) = [0] [0] [0] Following rules are strictly oriented: fac#(s(x)) = [0 1 0] [1] [0 1 0] x + [1] [0 2 0] [2] > [0 1 0] [0] [0 1 0] x + [1] [0 2 0] [2] = c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) Following rules are (at-least) weakly oriented: p(s(0())) = [3] [1] [1] >= [1] [1] [1] = 0() p(s(s(x))) = [0 2 0] [3] [0 1 0] x + [1] [0 0 0] [1] >= [0 1 0] [0] [0 1 0] x + [1] [0 0 0] [0] = s(p(s(x))) *** Step 4.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 4.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) -->_2 fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: fac#(s(x)) -> c_1(times#(fac(p(s(x))),s(x)),fac#(p(s(x))),p#(s(x))) *** Step 4.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 4.b:1: PredecessorEstimationCP MAYBE + Considered Problem: - Strict DPs: p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak DPs: fac#(s(x)) -> fac#(p(s(x))) fac#(s(x)) -> p#(s(x)) fac#(s(x)) -> times#(fac(p(s(x))),s(x)) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: p#(s(s(x))) -> c_3(p#(s(x))) The strictly oriented rules are moved into the weak component. *** Step 4.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: p#(s(s(x))) -> c_3(p#(s(x))) plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak DPs: fac#(s(x)) -> fac#(p(s(x))) fac#(s(x)) -> p#(s(x)) fac#(s(x)) -> times#(fac(p(s(x))),s(x)) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {p,fac#,p#,plus#,times#} TcT has computed the following interpretation: p(0) = [8] p(fac) = [2] x1 + [0] p(p) = [1] x1 + [0] p(plus) = [0] p(s) = [1] x1 + [8] p(times) = [0] p(fac#) = [2] x1 + [3] p(p#) = [1] x1 + [0] p(plus#) = [0] p(times#) = [0] p(c_1) = [2] x3 + [8] p(c_2) = [1] p(c_3) = [1] x1 + [4] p(c_4) = [8] p(c_5) = [2] x1 + [0] p(c_6) = [1] p(c_7) = [1] p(c_8) = [2] x1 + [1] x2 + [0] Following rules are strictly oriented: p#(s(s(x))) = [1] x + [16] > [1] x + [12] = c_3(p#(s(x))) Following rules are (at-least) weakly oriented: fac#(s(x)) = [2] x + [19] >= [2] x + [19] = fac#(p(s(x))) fac#(s(x)) = [2] x + [19] >= [1] x + [8] = p#(s(x)) fac#(s(x)) = [2] x + [19] >= [0] = times#(fac(p(s(x))),s(x)) plus#(x,s(y)) = [0] >= [0] = c_5(plus#(x,y)) times#(s(x),y) = [0] >= [0] = c_8(plus#(times(x,y),y),times#(x,y)) p(s(0())) = [16] >= [8] = 0() p(s(s(x))) = [1] x + [16] >= [1] x + [16] = s(p(s(x))) *** Step 4.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak DPs: fac#(s(x)) -> fac#(p(s(x))) fac#(s(x)) -> p#(s(x)) fac#(s(x)) -> times#(fac(p(s(x))),s(x)) p#(s(s(x))) -> c_3(p#(s(x))) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 4.b:1.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak DPs: fac#(s(x)) -> fac#(p(s(x))) fac#(s(x)) -> p#(s(x)) fac#(s(x)) -> times#(fac(p(s(x))),s(x)) p#(s(s(x))) -> c_3(p#(s(x))) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:plus#(x,s(y)) -> c_5(plus#(x,y)) -->_1 plus#(x,s(y)) -> c_5(plus#(x,y)):1 2:S:times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) -->_2 times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)):2 -->_1 plus#(x,s(y)) -> c_5(plus#(x,y)):1 3:W:fac#(s(x)) -> fac#(p(s(x))) -->_1 fac#(s(x)) -> times#(fac(p(s(x))),s(x)):5 -->_1 fac#(s(x)) -> p#(s(x)):4 -->_1 fac#(s(x)) -> fac#(p(s(x))):3 4:W:fac#(s(x)) -> p#(s(x)) -->_1 p#(s(s(x))) -> c_3(p#(s(x))):6 5:W:fac#(s(x)) -> times#(fac(p(s(x))),s(x)) -->_1 times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)):2 6:W:p#(s(s(x))) -> c_3(p#(s(x))) -->_1 p#(s(s(x))) -> c_3(p#(s(x))):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: fac#(s(x)) -> p#(s(x)) 6: p#(s(s(x))) -> c_3(p#(s(x))) *** Step 4.b:1.b:2: Failure MAYBE + Considered Problem: - Strict DPs: plus#(x,s(y)) -> c_5(plus#(x,y)) times#(s(x),y) -> c_8(plus#(times(x,y),y),times#(x,y)) - Weak DPs: fac#(s(x)) -> fac#(p(s(x))) fac#(s(x)) -> times#(fac(p(s(x))),s(x)) - Weak TRS: fac(s(x)) -> times(fac(p(s(x))),s(x)) p(s(0())) -> 0() p(s(s(x))) -> s(p(s(x))) plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) times(x,0()) -> 0() times(0(),y) -> 0() times(s(x),y) -> plus(times(x,y),y) - Signature: {fac/1,p/1,plus/2,times/2,fac#/1,p#/1,plus#/2,times#/2} / {0/0,s/1,c_1/3,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0 ,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {fac#,p#,plus#,times#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE