MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            if(false(),b,x,y) -> logZeroError()
            if(true(),false(),x,s(y)) -> y
            if(true(),true(),x,y) -> logIter(x,y)
            inc(0()) -> s(0())
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(x) -> logIter(x,0())
            logIter(x,y) -> if(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2} / {0/0,false/0,logZeroError/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if,inc,le,log,logIter,minus,quot} and constructors {0
            ,false,logZeroError,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          if#(false(),b,x,y) -> c_1()
          if#(true(),false(),x,s(y)) -> c_2()
          if#(true(),true(),x,y) -> c_3(logIter#(x,y))
          inc#(0()) -> c_4()
          inc#(s(x)) -> c_5(inc#(x))
          le#(0(),y) -> c_6()
          le#(s(x),0()) -> c_7()
          le#(s(x),s(y)) -> c_8(le#(x,y))
          log#(x) -> c_9(logIter#(x,0()))
          logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                               ,le#(s(0()),x)
                               ,le#(s(s(0())),x)
                               ,quot#(x,s(s(0())))
                               ,inc#(y))
          minus#(x,0()) -> c_11()
          minus#(s(x),s(y)) -> c_12(minus#(x,y))
          quot#(0(),s(y)) -> c_13()
          quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1()
            if#(true(),false(),x,s(y)) -> c_2()
            if#(true(),true(),x,y) -> c_3(logIter#(x,y))
            inc#(0()) -> c_4()
            inc#(s(x)) -> c_5(inc#(x))
            le#(0(),y) -> c_6()
            le#(s(x),0()) -> c_7()
            le#(s(x),s(y)) -> c_8(le#(x,y))
            log#(x) -> c_9(logIter#(x,0()))
            logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                 ,le#(s(0()),x)
                                 ,le#(s(s(0())),x)
                                 ,quot#(x,s(s(0())))
                                 ,inc#(y))
            minus#(x,0()) -> c_11()
            minus#(s(x),s(y)) -> c_12(minus#(x,y))
            quot#(0(),s(y)) -> c_13()
            quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            if(false(),b,x,y) -> logZeroError()
            if(true(),false(),x,s(y)) -> y
            if(true(),true(),x,y) -> logIter(x,y)
            inc(0()) -> s(0())
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            log(x) -> logIter(x,0())
            logIter(x,y) -> if(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2,if#/4,inc#/1,le#/2,log#/1,logIter#/2,minus#/2
            ,quot#/2} / {0/0,false/0,logZeroError/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0,c_8/1,c_9/1
            ,c_10/5,c_11/0,c_12/1,c_13/0,c_14/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,inc#,le#,log#,logIter#,minus#
            ,quot#} and constructors {0,false,logZeroError,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          inc(0()) -> s(0())
          inc(s(x)) -> s(inc(x))
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
          if#(false(),b,x,y) -> c_1()
          if#(true(),false(),x,s(y)) -> c_2()
          if#(true(),true(),x,y) -> c_3(logIter#(x,y))
          inc#(0()) -> c_4()
          inc#(s(x)) -> c_5(inc#(x))
          le#(0(),y) -> c_6()
          le#(s(x),0()) -> c_7()
          le#(s(x),s(y)) -> c_8(le#(x,y))
          log#(x) -> c_9(logIter#(x,0()))
          logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                               ,le#(s(0()),x)
                               ,le#(s(s(0())),x)
                               ,quot#(x,s(s(0())))
                               ,inc#(y))
          minus#(x,0()) -> c_11()
          minus#(s(x),s(y)) -> c_12(minus#(x,y))
          quot#(0(),s(y)) -> c_13()
          quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(false(),b,x,y) -> c_1()
            if#(true(),false(),x,s(y)) -> c_2()
            if#(true(),true(),x,y) -> c_3(logIter#(x,y))
            inc#(0()) -> c_4()
            inc#(s(x)) -> c_5(inc#(x))
            le#(0(),y) -> c_6()
            le#(s(x),0()) -> c_7()
            le#(s(x),s(y)) -> c_8(le#(x,y))
            log#(x) -> c_9(logIter#(x,0()))
            logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                 ,le#(s(0()),x)
                                 ,le#(s(s(0())),x)
                                 ,quot#(x,s(s(0())))
                                 ,inc#(y))
            minus#(x,0()) -> c_11()
            minus#(s(x),s(y)) -> c_12(minus#(x,y))
            quot#(0(),s(y)) -> c_13()
            quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            inc(0()) -> s(0())
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2,if#/4,inc#/1,le#/2,log#/1,logIter#/2,minus#/2
            ,quot#/2} / {0/0,false/0,logZeroError/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0,c_8/1,c_9/1
            ,c_10/5,c_11/0,c_12/1,c_13/0,c_14/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,inc#,le#,log#,logIter#,minus#
            ,quot#} and constructors {0,false,logZeroError,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,4,6,7,11,13}
        by application of
          Pre({1,2,4,6,7,11,13}) = {5,8,10,12,14}.
        Here rules are labelled as follows:
          1: if#(false(),b,x,y) -> c_1()
          2: if#(true(),false(),x,s(y)) -> c_2()
          3: if#(true(),true(),x,y) -> c_3(logIter#(x,y))
          4: inc#(0()) -> c_4()
          5: inc#(s(x)) -> c_5(inc#(x))
          6: le#(0(),y) -> c_6()
          7: le#(s(x),0()) -> c_7()
          8: le#(s(x),s(y)) -> c_8(le#(x,y))
          9: log#(x) -> c_9(logIter#(x,0()))
          10: logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                   ,le#(s(0()),x)
                                   ,le#(s(s(0())),x)
                                   ,quot#(x,s(s(0())))
                                   ,inc#(y))
          11: minus#(x,0()) -> c_11()
          12: minus#(s(x),s(y)) -> c_12(minus#(x,y))
          13: quot#(0(),s(y)) -> c_13()
          14: quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(true(),true(),x,y) -> c_3(logIter#(x,y))
            inc#(s(x)) -> c_5(inc#(x))
            le#(s(x),s(y)) -> c_8(le#(x,y))
            log#(x) -> c_9(logIter#(x,0()))
            logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                 ,le#(s(0()),x)
                                 ,le#(s(s(0())),x)
                                 ,quot#(x,s(s(0())))
                                 ,inc#(y))
            minus#(s(x),s(y)) -> c_12(minus#(x,y))
            quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak DPs:
            if#(false(),b,x,y) -> c_1()
            if#(true(),false(),x,s(y)) -> c_2()
            inc#(0()) -> c_4()
            le#(0(),y) -> c_6()
            le#(s(x),0()) -> c_7()
            minus#(x,0()) -> c_11()
            quot#(0(),s(y)) -> c_13()
        - Weak TRS:
            inc(0()) -> s(0())
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2,if#/4,inc#/1,le#/2,log#/1,logIter#/2,minus#/2
            ,quot#/2} / {0/0,false/0,logZeroError/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0,c_8/1,c_9/1
            ,c_10/5,c_11/0,c_12/1,c_13/0,c_14/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,inc#,le#,log#,logIter#,minus#
            ,quot#} and constructors {0,false,logZeroError,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:if#(true(),true(),x,y) -> c_3(logIter#(x,y))
             -->_1 logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                        ,le#(s(0()),x)
                                        ,le#(s(s(0())),x)
                                        ,quot#(x,s(s(0())))
                                        ,inc#(y)):5
          
          2:S:inc#(s(x)) -> c_5(inc#(x))
             -->_1 inc#(0()) -> c_4():10
             -->_1 inc#(s(x)) -> c_5(inc#(x)):2
          
          3:S:le#(s(x),s(y)) -> c_8(le#(x,y))
             -->_1 le#(s(x),0()) -> c_7():12
             -->_1 le#(0(),y) -> c_6():11
             -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):3
          
          4:S:log#(x) -> c_9(logIter#(x,0()))
             -->_1 logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                        ,le#(s(0()),x)
                                        ,le#(s(s(0())),x)
                                        ,quot#(x,s(s(0())))
                                        ,inc#(y)):5
          
          5:S:logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                   ,le#(s(0()),x)
                                   ,le#(s(s(0())),x)
                                   ,quot#(x,s(s(0())))
                                   ,inc#(y))
             -->_4 quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y)):7
             -->_4 quot#(0(),s(y)) -> c_13():14
             -->_3 le#(s(x),0()) -> c_7():12
             -->_2 le#(s(x),0()) -> c_7():12
             -->_5 inc#(0()) -> c_4():10
             -->_1 if#(true(),false(),x,s(y)) -> c_2():9
             -->_1 if#(false(),b,x,y) -> c_1():8
             -->_3 le#(s(x),s(y)) -> c_8(le#(x,y)):3
             -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):3
             -->_5 inc#(s(x)) -> c_5(inc#(x)):2
             -->_1 if#(true(),true(),x,y) -> c_3(logIter#(x,y)):1
          
          6:S:minus#(s(x),s(y)) -> c_12(minus#(x,y))
             -->_1 minus#(x,0()) -> c_11():13
             -->_1 minus#(s(x),s(y)) -> c_12(minus#(x,y)):6
          
          7:S:quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(0(),s(y)) -> c_13():14
             -->_2 minus#(x,0()) -> c_11():13
             -->_1 quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y)):7
             -->_2 minus#(s(x),s(y)) -> c_12(minus#(x,y)):6
          
          8:W:if#(false(),b,x,y) -> c_1()
             
          
          9:W:if#(true(),false(),x,s(y)) -> c_2()
             
          
          10:W:inc#(0()) -> c_4()
             
          
          11:W:le#(0(),y) -> c_6()
             
          
          12:W:le#(s(x),0()) -> c_7()
             
          
          13:W:minus#(x,0()) -> c_11()
             
          
          14:W:quot#(0(),s(y)) -> c_13()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          11: le#(0(),y) -> c_6()
          8: if#(false(),b,x,y) -> c_1()
          9: if#(true(),false(),x,s(y)) -> c_2()
          10: inc#(0()) -> c_4()
          12: le#(s(x),0()) -> c_7()
          13: minus#(x,0()) -> c_11()
          14: quot#(0(),s(y)) -> c_13()
* Step 5: RemoveHeads MAYBE
    + Considered Problem:
        - Strict DPs:
            if#(true(),true(),x,y) -> c_3(logIter#(x,y))
            inc#(s(x)) -> c_5(inc#(x))
            le#(s(x),s(y)) -> c_8(le#(x,y))
            log#(x) -> c_9(logIter#(x,0()))
            logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                 ,le#(s(0()),x)
                                 ,le#(s(s(0())),x)
                                 ,quot#(x,s(s(0())))
                                 ,inc#(y))
            minus#(s(x),s(y)) -> c_12(minus#(x,y))
            quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
        - Weak TRS:
            inc(0()) -> s(0())
            inc(s(x)) -> s(inc(x))
            le(0(),y) -> true()
            le(s(x),0()) -> false()
            le(s(x),s(y)) -> le(x,y)
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2,if#/4,inc#/1,le#/2,log#/1,logIter#/2,minus#/2
            ,quot#/2} / {0/0,false/0,logZeroError/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0,c_8/1,c_9/1
            ,c_10/5,c_11/0,c_12/1,c_13/0,c_14/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {if#,inc#,le#,log#,logIter#,minus#
            ,quot#} and constructors {0,false,logZeroError,s,true}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:if#(true(),true(),x,y) -> c_3(logIter#(x,y))
           -->_1 logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                      ,le#(s(0()),x)
                                      ,le#(s(s(0())),x)
                                      ,quot#(x,s(s(0())))
                                      ,inc#(y)):5
        
        2:S:inc#(s(x)) -> c_5(inc#(x))
           -->_1 inc#(s(x)) -> c_5(inc#(x)):2
        
        3:S:le#(s(x),s(y)) -> c_8(le#(x,y))
           -->_1 le#(s(x),s(y)) -> c_8(le#(x,y)):3
        
        4:S:log#(x) -> c_9(logIter#(x,0()))
           -->_1 logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                      ,le#(s(0()),x)
                                      ,le#(s(s(0())),x)
                                      ,quot#(x,s(s(0())))
                                      ,inc#(y)):5
        
        5:S:logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                                 ,le#(s(0()),x)
                                 ,le#(s(s(0())),x)
                                 ,quot#(x,s(s(0())))
                                 ,inc#(y))
           -->_4 quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y)):7
           -->_3 le#(s(x),s(y)) -> c_8(le#(x,y)):3
           -->_2 le#(s(x),s(y)) -> c_8(le#(x,y)):3
           -->_5 inc#(s(x)) -> c_5(inc#(x)):2
           -->_1 if#(true(),true(),x,y) -> c_3(logIter#(x,y)):1
        
        6:S:minus#(s(x),s(y)) -> c_12(minus#(x,y))
           -->_1 minus#(s(x),s(y)) -> c_12(minus#(x,y)):6
        
        7:S:quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y)):7
           -->_2 minus#(s(x),s(y)) -> c_12(minus#(x,y)):6
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(4,log#(x) -> c_9(logIter#(x,0())))]
* Step 6: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          if#(true(),true(),x,y) -> c_3(logIter#(x,y))
          inc#(s(x)) -> c_5(inc#(x))
          le#(s(x),s(y)) -> c_8(le#(x,y))
          logIter#(x,y) -> c_10(if#(le(s(0()),x),le(s(s(0())),x),quot(x,s(s(0()))),inc(y))
                               ,le#(s(0()),x)
                               ,le#(s(s(0())),x)
                               ,quot#(x,s(s(0())))
                               ,inc#(y))
          minus#(s(x),s(y)) -> c_12(minus#(x,y))
          quot#(s(x),s(y)) -> c_14(quot#(minus(x,y),s(y)),minus#(x,y))
      - Weak TRS:
          inc(0()) -> s(0())
          inc(s(x)) -> s(inc(x))
          le(0(),y) -> true()
          le(s(x),0()) -> false()
          le(s(x),s(y)) -> le(x,y)
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          quot(0(),s(y)) -> 0()
          quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      - Signature:
          {if/4,inc/1,le/2,log/1,logIter/2,minus/2,quot/2,if#/4,inc#/1,le#/2,log#/1,logIter#/2,minus#/2
          ,quot#/2} / {0/0,false/0,logZeroError/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0,c_7/0,c_8/1,c_9/1
          ,c_10/5,c_11/0,c_12/1,c_13/0,c_14/2}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {if#,inc#,le#,log#,logIter#,minus#
          ,quot#} and constructors {0,false,logZeroError,s,true}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE