MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: aver(sum,z) -> if(gt(sum,double(z)),sum,z) average(x,y) -> aver(plus(x,y),0()) double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) if(false(),sum,z) -> z if(true(),sum,z) -> aver(sum,s(z)) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2} / {0/0,false/0,s/1,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {aver,average,double,gt,if,plus} and constructors {0,false ,s,true} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) double#(0()) -> c_3() double#(s(x)) -> c_4(double#(x)) gt#(0(),y) -> c_5() gt#(s(x),0()) -> c_6() gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(false(),sum,z) -> c_8() if#(true(),sum,z) -> c_9(aver#(sum,s(z))) plus#(0(),y) -> c_10() plus#(s(x),y) -> c_11(plus#(x,y)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) double#(0()) -> c_3() double#(s(x)) -> c_4(double#(x)) gt#(0(),y) -> c_5() gt#(s(x),0()) -> c_6() gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(false(),sum,z) -> c_8() if#(true(),sum,z) -> c_9(aver#(sum,s(z))) plus#(0(),y) -> c_10() plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: aver(sum,z) -> if(gt(sum,double(z)),sum,z) average(x,y) -> aver(plus(x,y),0()) double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) if(false(),sum,z) -> z if(true(),sum,z) -> aver(sum,s(z)) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) double#(0()) -> c_3() double#(s(x)) -> c_4(double#(x)) gt#(0(),y) -> c_5() gt#(s(x),0()) -> c_6() gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(false(),sum,z) -> c_8() if#(true(),sum,z) -> c_9(aver#(sum,s(z))) plus#(0(),y) -> c_10() plus#(s(x),y) -> c_11(plus#(x,y)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) double#(0()) -> c_3() double#(s(x)) -> c_4(double#(x)) gt#(0(),y) -> c_5() gt#(s(x),0()) -> c_6() gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(false(),sum,z) -> c_8() if#(true(),sum,z) -> c_9(aver#(sum,s(z))) plus#(0(),y) -> c_10() plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,5,6,8,10} by application of Pre({3,5,6,8,10}) = {1,2,4,7,11}. Here rules are labelled as follows: 1: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) 2: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) 3: double#(0()) -> c_3() 4: double#(s(x)) -> c_4(double#(x)) 5: gt#(0(),y) -> c_5() 6: gt#(s(x),0()) -> c_6() 7: gt#(s(x),s(y)) -> c_7(gt#(x,y)) 8: if#(false(),sum,z) -> c_8() 9: if#(true(),sum,z) -> c_9(aver#(sum,s(z))) 10: plus#(0(),y) -> c_10() 11: plus#(s(x),y) -> c_11(plus#(x,y)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak DPs: double#(0()) -> c_3() gt#(0(),y) -> c_5() gt#(s(x),0()) -> c_6() if#(false(),sum,z) -> c_8() plus#(0(),y) -> c_10() - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) -->_1 if#(true(),sum,z) -> c_9(aver#(sum,s(z))):5 -->_2 gt#(s(x),s(y)) -> c_7(gt#(x,y)):4 -->_3 double#(s(x)) -> c_4(double#(x)):3 -->_1 if#(false(),sum,z) -> c_8():10 -->_2 gt#(s(x),0()) -> c_6():9 -->_2 gt#(0(),y) -> c_5():8 -->_3 double#(0()) -> c_3():7 2:S:average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) -->_2 plus#(s(x),y) -> c_11(plus#(x,y)):6 -->_2 plus#(0(),y) -> c_10():11 -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):1 3:S:double#(s(x)) -> c_4(double#(x)) -->_1 double#(0()) -> c_3():7 -->_1 double#(s(x)) -> c_4(double#(x)):3 4:S:gt#(s(x),s(y)) -> c_7(gt#(x,y)) -->_1 gt#(s(x),0()) -> c_6():9 -->_1 gt#(0(),y) -> c_5():8 -->_1 gt#(s(x),s(y)) -> c_7(gt#(x,y)):4 5:S:if#(true(),sum,z) -> c_9(aver#(sum,s(z))) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):1 6:S:plus#(s(x),y) -> c_11(plus#(x,y)) -->_1 plus#(0(),y) -> c_10():11 -->_1 plus#(s(x),y) -> c_11(plus#(x,y)):6 7:W:double#(0()) -> c_3() 8:W:gt#(0(),y) -> c_5() 9:W:gt#(s(x),0()) -> c_6() 10:W:if#(false(),sum,z) -> c_8() 11:W:plus#(0(),y) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 11: plus#(0(),y) -> c_10() 10: if#(false(),sum,z) -> c_8() 7: double#(0()) -> c_3() 8: gt#(0(),y) -> c_5() 9: gt#(s(x),0()) -> c_6() * Step 5: Decompose MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) - Weak DPs: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0 ,false/0,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if# ,plus#} and constructors {0,false,s,true} Problem (S) - Strict DPs: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0 ,false/0,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if# ,plus#} and constructors {0,false,s,true} ** Step 5.a:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) - Weak DPs: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) -->_1 if#(true(),sum,z) -> c_9(aver#(sum,s(z))):5 -->_2 gt#(s(x),s(y)) -> c_7(gt#(x,y)):4 -->_3 double#(s(x)) -> c_4(double#(x)):3 2:W:average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):1 -->_2 plus#(s(x),y) -> c_11(plus#(x,y)):6 3:S:double#(s(x)) -> c_4(double#(x)) -->_1 double#(s(x)) -> c_4(double#(x)):3 4:S:gt#(s(x),s(y)) -> c_7(gt#(x,y)) -->_1 gt#(s(x),s(y)) -> c_7(gt#(x,y)):4 5:S:if#(true(),sum,z) -> c_9(aver#(sum,s(z))) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):1 6:W:plus#(s(x),y) -> c_11(plus#(x,y)) -->_1 plus#(s(x),y) -> c_11(plus#(x,y)):6 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: plus#(s(x),y) -> c_11(plus#(x,y)) ** Step 5.a:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) - Weak DPs: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) -->_1 if#(true(),sum,z) -> c_9(aver#(sum,s(z))):5 -->_2 gt#(s(x),s(y)) -> c_7(gt#(x,y)):4 -->_3 double#(s(x)) -> c_4(double#(x)):3 2:W:average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):1 3:S:double#(s(x)) -> c_4(double#(x)) -->_1 double#(s(x)) -> c_4(double#(x)):3 4:S:gt#(s(x),s(y)) -> c_7(gt#(x,y)) -->_1 gt#(s(x),s(y)) -> c_7(gt#(x,y)):4 5:S:if#(true(),sum,z) -> c_9(aver#(sum,s(z))) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: average#(x,y) -> c_2(aver#(plus(x,y),0())) ** Step 5.a:3: Failure MAYBE + Considered Problem: - Strict DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) - Weak DPs: average#(x,y) -> c_2(aver#(plus(x,y),0())) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak DPs: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) double#(s(x)) -> c_4(double#(x)) gt#(s(x),s(y)) -> c_7(gt#(x,y)) if#(true(),sum,z) -> c_9(aver#(sum,s(z))) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):3 -->_2 plus#(s(x),y) -> c_11(plus#(x,y)):2 2:S:plus#(s(x),y) -> c_11(plus#(x,y)) -->_1 plus#(s(x),y) -> c_11(plus#(x,y)):2 3:W:aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) -->_1 if#(true(),sum,z) -> c_9(aver#(sum,s(z))):6 -->_2 gt#(s(x),s(y)) -> c_7(gt#(x,y)):5 -->_3 double#(s(x)) -> c_4(double#(x)):4 4:W:double#(s(x)) -> c_4(double#(x)) -->_1 double#(s(x)) -> c_4(double#(x)):4 5:W:gt#(s(x),s(y)) -> c_7(gt#(x,y)) -->_1 gt#(s(x),s(y)) -> c_7(gt#(x,y)):5 6:W:if#(true(),sum,z) -> c_9(aver#(sum,s(z))) -->_1 aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: aver#(sum,z) -> c_1(if#(gt(sum,double(z)),sum,z),gt#(sum,double(z)),double#(z)) 6: if#(true(),sum,z) -> c_9(aver#(sum,s(z))) 4: double#(s(x)) -> c_4(double#(x)) 5: gt#(s(x),s(y)) -> c_7(gt#(x,y)) ** Step 5.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/2,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:average#(x,y) -> c_2(aver#(plus(x,y),0()),plus#(x,y)) -->_2 plus#(s(x),y) -> c_11(plus#(x,y)):2 2:S:plus#(s(x),y) -> c_11(plus#(x,y)) -->_1 plus#(s(x),y) -> c_11(plus#(x,y)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: average#(x,y) -> c_2(plus#(x,y)) ** Step 5.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: average#(x,y) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Weak TRS: double(0()) -> 0() double(s(x)) -> s(s(double(x))) gt(0(),y) -> false() gt(s(x),0()) -> true() gt(s(x),s(y)) -> gt(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: average#(x,y) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) ** Step 5.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: average#(x,y) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: average#(x,y) -> c_2(plus#(x,y)) 2: plus#(s(x),y) -> c_11(plus#(x,y)) The strictly oriented rules are moved into the weak component. *** Step 5.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: average#(x,y) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_11) = {1} Following symbols are considered usable: {aver#,average#,double#,gt#,if#,plus#} TcT has computed the following interpretation: p(0) = [1] p(aver) = [2] x2 + [0] p(average) = [1] x1 + [0] p(double) = [1] p(false) = [0] p(gt) = [2] x2 + [0] p(if) = [1] x1 + [1] x3 + [8] p(plus) = [1] x2 + [1] p(s) = [1] x1 + [2] p(true) = [1] p(aver#) = [0] p(average#) = [4] x1 + [7] p(double#) = [1] x1 + [8] p(gt#) = [2] x1 + [2] p(if#) = [1] x2 + [2] x3 + [0] p(plus#) = [2] x1 + [3] p(c_1) = [1] x1 + [1] x2 + [2] x3 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [2] p(c_4) = [8] x1 + [2] p(c_5) = [1] p(c_6) = [1] p(c_7) = [0] p(c_8) = [1] p(c_9) = [2] p(c_10) = [0] p(c_11) = [1] x1 + [0] Following rules are strictly oriented: average#(x,y) = [4] x + [7] > [2] x + [3] = c_2(plus#(x,y)) plus#(s(x),y) = [2] x + [7] > [2] x + [3] = c_11(plus#(x,y)) Following rules are (at-least) weakly oriented: *** Step 5.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: average#(x,y) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: average#(x,y) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_11(plus#(x,y)) - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:average#(x,y) -> c_2(plus#(x,y)) -->_1 plus#(s(x),y) -> c_11(plus#(x,y)):2 2:W:plus#(s(x),y) -> c_11(plus#(x,y)) -->_1 plus#(s(x),y) -> c_11(plus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: average#(x,y) -> c_2(plus#(x,y)) 2: plus#(s(x),y) -> c_11(plus#(x,y)) *** Step 5.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {aver/2,average/2,double/1,gt/2,if/3,plus/2,aver#/2,average#/2,double#/1,gt#/2,if#/3,plus#/2} / {0/0,false/0 ,s/1,true/0,c_1/3,c_2/1,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/0,c_9/1,c_10/0,c_11/1} - Obligation: innermost runtime complexity wrt. defined symbols {aver#,average#,double#,gt#,if#,plus#} and constructors {0 ,false,s,true} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). MAYBE