WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> add0(Cons(Cons(Nil(),Nil()),x'),xs) goal(x,y) -> add0(x,y) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {add0/2,goal/2,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0,goal,notEmpty} and constructors {Cons,False,Nil ,True} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) goal#(x,y) -> c_3(add0#(x,y)) notEmpty#(Cons(x,xs)) -> c_4() notEmpty#(Nil()) -> c_5() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) goal#(x,y) -> c_3(add0#(x,y)) notEmpty#(Cons(x,xs)) -> c_4() notEmpty#(Nil()) -> c_5() - Strict TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> add0(Cons(Cons(Nil(),Nil()),x'),xs) goal(x,y) -> add0(x,y) notEmpty(Cons(x,xs)) -> True() notEmpty(Nil()) -> False() - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) goal#(x,y) -> c_3(add0#(x,y)) notEmpty#(Cons(x,xs)) -> c_4() notEmpty#(Nil()) -> c_5() * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) goal#(x,y) -> c_3(add0#(x,y)) notEmpty#(Cons(x,xs)) -> c_4() notEmpty#(Nil()) -> c_5() - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5} by application of Pre({1,4,5}) = {2,3}. Here rules are labelled as follows: 1: add0#(x,Nil()) -> c_1() 2: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) 3: goal#(x,y) -> c_3(add0#(x,y)) 4: notEmpty#(Cons(x,xs)) -> c_4() 5: notEmpty#(Nil()) -> c_5() * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) goal#(x,y) -> c_3(add0#(x,y)) - Weak DPs: add0#(x,Nil()) -> c_1() notEmpty#(Cons(x,xs)) -> c_4() notEmpty#(Nil()) -> c_5() - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) -->_1 add0#(x,Nil()) -> c_1():3 -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)):1 2:S:goal#(x,y) -> c_3(add0#(x,y)) -->_1 add0#(x,Nil()) -> c_1():3 -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)):1 3:W:add0#(x,Nil()) -> c_1() 4:W:notEmpty#(Cons(x,xs)) -> c_4() 5:W:notEmpty#(Nil()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: notEmpty#(Nil()) -> c_5() 4: notEmpty#(Cons(x,xs)) -> c_4() 3: add0#(x,Nil()) -> c_1() * Step 5: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) goal#(x,y) -> c_3(add0#(x,y)) - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)):1 2:S:goal#(x,y) -> c_3(add0#(x,y)) -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(x,y) -> c_3(add0#(x,y)))] * Step 6: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) The strictly oriented rules are moved into the weak component. ** Step 6.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {add0#,goal#,notEmpty#} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [8] p(False) = [1] p(Nil) = [0] p(True) = [0] p(add0) = [2] p(goal) = [0] p(notEmpty) = [2] x1 + [0] p(add0#) = [2] x2 + [0] p(goal#) = [2] x1 + [2] x2 + [0] p(notEmpty#) = [8] x1 + [1] p(c_1) = [8] p(c_2) = [1] x1 + [8] p(c_3) = [1] x1 + [1] p(c_4) = [0] p(c_5) = [1] Following rules are strictly oriented: add0#(x',Cons(x,xs)) = [2] x + [2] xs + [16] > [2] xs + [8] = c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) Following rules are (at-least) weakly oriented: ** Step 6.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: add0#(x',Cons(x,xs)) -> c_2(add0#(Cons(Cons(Nil(),Nil()),x'),xs)) ** Step 6.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {add0/2,goal/2,notEmpty/1,add0#/2,goal#/2,notEmpty#/1} / {Cons/2,False/0,Nil/0,True/0,c_1/0,c_2/1,c_3/1 ,c_4/0,c_5/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,notEmpty#} and constructors {Cons,False,Nil ,True} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))