WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: duplicate(Cons(x,xs)) -> Cons(x,Cons(x,duplicate(xs))) duplicate(Nil()) -> Nil() goal(x) -> duplicate(x) - Signature: {duplicate/1,goal/1} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate,goal} and constructors {Cons,Nil} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) duplicate#(Nil()) -> c_2() goal#(x) -> c_3(duplicate#(x)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) duplicate#(Nil()) -> c_2() goal#(x) -> c_3(duplicate#(x)) - Strict TRS: duplicate(Cons(x,xs)) -> Cons(x,Cons(x,duplicate(xs))) duplicate(Nil()) -> Nil() goal(x) -> duplicate(x) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) duplicate#(Nil()) -> c_2() goal#(x) -> c_3(duplicate#(x)) * Step 3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) duplicate#(Nil()) -> c_2() goal#(x) -> c_3(duplicate#(x)) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {1,3}. Here rules are labelled as follows: 1: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) 2: duplicate#(Nil()) -> c_2() 3: goal#(x) -> c_3(duplicate#(x)) * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) goal#(x) -> c_3(duplicate#(x)) - Weak DPs: duplicate#(Nil()) -> c_2() - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) -->_1 duplicate#(Nil()) -> c_2():3 -->_1 duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)):1 2:S:goal#(x) -> c_3(duplicate#(x)) -->_1 duplicate#(Nil()) -> c_2():3 -->_1 duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)):1 3:W:duplicate#(Nil()) -> c_2() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: duplicate#(Nil()) -> c_2() * Step 5: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) goal#(x) -> c_3(duplicate#(x)) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) -->_1 duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)):1 2:S:goal#(x) -> c_3(duplicate#(x)) -->_1 duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(x) -> c_3(duplicate#(x)))] * Step 6: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) The strictly oriented rules are moved into the weak component. ** Step 6.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_1) = {1} Following symbols are considered usable: {duplicate#,goal#} TcT has computed the following interpretation: p(Cons) = [1] x2 + [8] p(Nil) = [8] p(duplicate) = [1] p(goal) = [1] x1 + [1] p(duplicate#) = [1] x1 + [0] p(goal#) = [1] x1 + [8] p(c_1) = [1] x1 + [0] p(c_2) = [0] p(c_3) = [1] x1 + [0] Following rules are strictly oriented: duplicate#(Cons(x,xs)) = [1] xs + [8] > [1] xs + [0] = c_1(duplicate#(xs)) Following rules are (at-least) weakly oriented: ** Step 6.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) -->_1 duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: duplicate#(Cons(x,xs)) -> c_1(duplicate#(xs)) ** Step 6.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {duplicate/1,goal/1,duplicate#/1,goal#/1} / {Cons/2,Nil/0,c_1/1,c_2/0,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {duplicate#,goal#} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))