MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) goal(x,y) -> power(x,y) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2} / {Cons/2,Nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {add0,goal,mult,power} and constructors {Cons,Nil} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) goal#(x,y) -> c_3(power#(x,y)) mult#(x,Nil()) -> c_4() mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x,Nil()) -> c_6() power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) goal#(x,y) -> c_3(power#(x,y)) mult#(x,Nil()) -> c_4() mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x,Nil()) -> c_6() power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) goal(x,y) -> power(x,y) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) goal#(x,y) -> c_3(power#(x,y)) mult#(x,Nil()) -> c_4() mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x,Nil()) -> c_6() power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: add0#(x,Nil()) -> c_1() add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) goal#(x,y) -> c_3(power#(x,y)) mult#(x,Nil()) -> c_4() mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x,Nil()) -> c_6() power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,6} by application of Pre({1,4,6}) = {2,3,5,7}. Here rules are labelled as follows: 1: add0#(x,Nil()) -> c_1() 2: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) 3: goal#(x,y) -> c_3(power#(x,y)) 4: mult#(x,Nil()) -> c_4() 5: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) 6: power#(x,Nil()) -> c_6() 7: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) goal#(x,y) -> c_3(power#(x,y)) mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak DPs: add0#(x,Nil()) -> c_1() mult#(x,Nil()) -> c_4() power#(x,Nil()) -> c_6() - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) -->_1 add0#(x,Nil()) -> c_1():5 -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)):1 2:S:goal#(x,y) -> c_3(power#(x,y)) -->_1 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):4 -->_1 power#(x,Nil()) -> c_6():7 3:S:mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) -->_2 mult#(x,Nil()) -> c_4():6 -->_1 add0#(x,Nil()) -> c_1():5 -->_2 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):3 -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)):1 4:S:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x,Nil()) -> c_6():7 -->_1 mult#(x,Nil()) -> c_4():6 -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):4 -->_1 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):3 5:W:add0#(x,Nil()) -> c_1() 6:W:mult#(x,Nil()) -> c_4() 7:W:power#(x,Nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: mult#(x,Nil()) -> c_4() 7: power#(x,Nil()) -> c_6() 5: add0#(x,Nil()) -> c_1() * Step 5: RemoveHeads MAYBE + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) goal#(x,y) -> c_3(power#(x,y)) mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)):1 2:S:goal#(x,y) -> c_3(power#(x,y)) -->_1 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):4 3:S:mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) -->_2 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):3 -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)):1 4:S:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):4 -->_1 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,goal#(x,y) -> c_3(power#(x,y)))] * Step 6: Decompose MAYBE + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) - Weak DPs: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} Problem (S) - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} ** Step 6.a:1: DecomposeDG MAYBE + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) - Weak DPs: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) and a lower component add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) Further, following extension rules are added to the lower component. power#(x',Cons(x,xs)) -> mult#(x',power(x',xs)) power#(x',Cons(x,xs)) -> power#(x',xs) *** Step 6.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) The strictly oriented rules are moved into the weak component. **** Step 6.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1,2} Following symbols are considered usable: {add0#,goal#,mult#,power#} TcT has computed the following interpretation: p(Cons) = [1] x2 + [8] p(Nil) = [0] p(add0) = [1] x1 + [0] p(goal) = [0] p(mult) = [8] x1 + [1] p(power) = [1] x1 + [0] p(add0#) = [1] x1 + [2] x2 + [0] p(goal#) = [1] p(mult#) = [0] p(power#) = [1] x2 + [0] p(c_1) = [1] p(c_2) = [2] x1 + [1] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] x1 + [1] p(c_6) = [0] p(c_7) = [4] x1 + [1] x2 + [0] Following rules are strictly oriented: power#(x',Cons(x,xs)) = [1] xs + [8] > [1] xs + [0] = c_7(mult#(x',power(x',xs)),power#(x',xs)) Following rules are (at-least) weakly oriented: **** Step 6.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 6.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) **** Step 6.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 6.a:1.b:1: Failure MAYBE + Considered Problem: - Strict DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) - Weak DPs: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> mult#(x',power(x',xs)) power#(x',Cons(x,xs)) -> power#(x',xs) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 6.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak DPs: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)):3 -->_2 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):1 2:S:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):2 -->_1 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):1 3:W:add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) -->_1 add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: add0#(x',Cons(x,xs)) -> c_2(add0#(x',xs)) ** Step 6.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/2,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)) -->_2 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):1 2:S:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):2 -->_1 mult#(x',Cons(x,xs)) -> c_5(add0#(x',mult(x',xs)),mult#(x',xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) ** Step 6.b:3: Decompose MAYBE + Considered Problem: - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) - Weak DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} Problem (S) - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak DPs: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} *** Step 6.b:3.a:1: DecomposeDG MAYBE + Considered Problem: - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) - Weak DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) and a lower component mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) Further, following extension rules are added to the lower component. power#(x',Cons(x,xs)) -> mult#(x',power(x',xs)) power#(x',Cons(x,xs)) -> power#(x',xs) **** Step 6.b:3.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) The strictly oriented rules are moved into the weak component. ***** Step 6.b:3.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1,2} Following symbols are considered usable: {add0#,goal#,mult#,power#} TcT has computed the following interpretation: p(Cons) = [1] x2 + [5] p(Nil) = [1] p(add0) = [8] x1 + [4] p(goal) = [2] p(mult) = [4] p(power) = [0] p(add0#) = [4] x2 + [2] p(goal#) = [8] x2 + [2] p(mult#) = [8] p(power#) = [5] x2 + [6] p(c_1) = [8] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [2] p(c_4) = [1] p(c_5) = [2] x1 + [1] p(c_6) = [2] p(c_7) = [1] x1 + [1] x2 + [7] Following rules are strictly oriented: power#(x',Cons(x,xs)) = [5] xs + [31] > [5] xs + [21] = c_7(mult#(x',power(x',xs)),power#(x',xs)) Following rules are (at-least) weakly oriented: ***** Step 6.b:3.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 6.b:3.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) ***** Step 6.b:3.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 6.b:3.a:1.b:1: Failure MAYBE + Considered Problem: - Strict DPs: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) - Weak DPs: power#(x',Cons(x,xs)) -> mult#(x',power(x',xs)) power#(x',Cons(x,xs)) -> power#(x',xs) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak DPs: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_1 mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)):2 -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):1 2:W:mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) -->_1 mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: mult#(x',Cons(x,xs)) -> c_5(mult#(x',xs)) *** Step 6.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)) -->_2 power#(x',Cons(x,xs)) -> c_7(mult#(x',power(x',xs)),power#(x',xs)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) *** Step 6.b:3.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) - Weak TRS: add0(x,Nil()) -> x add0(x',Cons(x,xs)) -> Cons(Cons(Nil(),Nil()),add0(x',xs)) mult(x,Nil()) -> Nil() mult(x',Cons(x,xs)) -> add0(x',mult(x',xs)) power(x,Nil()) -> Cons(Nil(),Nil()) power(x',Cons(x,xs)) -> mult(x',power(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) *** Step 6.b:3.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) The strictly oriented rules are moved into the weak component. **** Step 6.b:3.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {add0#,goal#,mult#,power#} TcT has computed the following interpretation: p(Cons) = [1] x1 + [1] x2 + [4] p(Nil) = [0] p(add0) = [0] p(goal) = [1] x1 + [1] x2 + [0] p(mult) = [1] x1 + [1] x2 + [0] p(power) = [1] x1 + [2] x2 + [1] p(add0#) = [1] x2 + [8] p(goal#) = [2] x1 + [2] x2 + [8] p(mult#) = [2] x1 + [1] p(power#) = [4] x2 + [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] p(c_4) = [4] p(c_5) = [1] x1 + [1] p(c_6) = [1] p(c_7) = [1] x1 + [14] Following rules are strictly oriented: power#(x',Cons(x,xs)) = [4] x + [4] xs + [16] > [4] xs + [14] = c_7(power#(x',xs)) Following rules are (at-least) weakly oriented: **** Step 6.b:3.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 6.b:3.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) -->_1 power#(x',Cons(x,xs)) -> c_7(power#(x',xs)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: power#(x',Cons(x,xs)) -> c_7(power#(x',xs)) **** Step 6.b:3.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {add0/2,goal/2,mult/2,power/2,add0#/2,goal#/2,mult#/2,power#/2} / {Cons/2,Nil/0,c_1/0,c_2/1,c_3/1,c_4/0 ,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {add0#,goal#,mult#,power#} and constructors {Cons,Nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). MAYBE