MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) - Signature: {+/2,add0/2,mult/2,power/2} / {0/0,S/1} - Obligation: innermost runtime complexity wrt. defined symbols {+,add0,mult,power} and constructors {0,S} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add0#(x,0()) -> c_1() add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) mult#(x,0()) -> c_3() mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x,0()) -> c_5() power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) Weak DPs +#(x,S(0())) -> c_7() +#(S(0()),y) -> c_8() and mark the set of starting terms. * Step 2: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: add0#(x,0()) -> c_1() add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) mult#(x,0()) -> c_3() mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x,0()) -> c_5() power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak DPs: +#(x,S(0())) -> c_7() +#(S(0()),y) -> c_8() - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5} by application of Pre({1,3,5}) = {2,4,6}. Here rules are labelled as follows: 1: add0#(x,0()) -> c_1() 2: add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) 3: mult#(x,0()) -> c_3() 4: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) 5: power#(x,0()) -> c_5() 6: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) 7: +#(x,S(0())) -> c_7() 8: +#(S(0()),y) -> c_8() * Step 3: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak DPs: +#(x,S(0())) -> c_7() +#(S(0()),y) -> c_8() add0#(x,0()) -> c_1() mult#(x,0()) -> c_3() power#(x,0()) -> c_5() - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) -->_2 add0#(x,0()) -> c_1():6 -->_1 +#(S(0()),y) -> c_8():5 -->_1 +#(x,S(0())) -> c_7():4 -->_2 add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)):1 2:S:mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) -->_2 mult#(x,0()) -> c_3():7 -->_1 add0#(x,0()) -> c_1():6 -->_2 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):2 -->_1 add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)):1 3:S:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x,0()) -> c_5():8 -->_1 mult#(x,0()) -> c_3():7 -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):3 -->_1 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):2 4:W:+#(x,S(0())) -> c_7() 5:W:+#(S(0()),y) -> c_8() 6:W:add0#(x,0()) -> c_1() 7:W:mult#(x,0()) -> c_3() 8:W:power#(x,0()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: power#(x,0()) -> c_5() 7: mult#(x,0()) -> c_3() 4: +#(x,S(0())) -> c_7() 5: +#(S(0()),y) -> c_8() 6: add0#(x,0()) -> c_1() * Step 4: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/2,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)) -->_2 add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)):1 2:S:mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) -->_2 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):2 -->_1 add0#(x',S(x)) -> c_2(+#(S(0()),add0(x',x)),add0#(x',x)):1 3:S:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):3 -->_1 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: add0#(x',S(x)) -> c_2(add0#(x',x)) * Step 5: Decompose MAYBE + Considered Problem: - Strict DPs: add0#(x',S(x)) -> c_2(add0#(x',x)) mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: add0#(x',S(x)) -> c_2(add0#(x',x)) - Weak DPs: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} Problem (S) - Strict DPs: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak DPs: add0#(x',S(x)) -> c_2(add0#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} ** Step 5.a:1: DecomposeDG MAYBE + Considered Problem: - Strict DPs: add0#(x',S(x)) -> c_2(add0#(x',x)) - Weak DPs: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) and a lower component add0#(x',S(x)) -> c_2(add0#(x',x)) mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) Further, following extension rules are added to the lower component. power#(x',S(x)) -> mult#(x',power(x',x)) power#(x',S(x)) -> power#(x',x) *** Step 5.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) The strictly oriented rules are moved into the weak component. **** Step 5.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1,2} Following symbols are considered usable: {+#,add0#,mult#,power#} TcT has computed the following interpretation: p(+) = [1] x1 + [3] x2 + [1] p(0) = [2] p(S) = [1] x1 + [4] p(add0) = [2] p(mult) = [4] x2 + [8] p(power) = [0] p(+#) = [1] x1 + [0] p(add0#) = [4] x1 + [1] x2 + [1] p(mult#) = [1] p(power#) = [4] x1 + [4] x2 + [8] p(c_1) = [2] p(c_2) = [2] x1 + [1] p(c_3) = [8] p(c_4) = [1] x1 + [4] p(c_5) = [8] p(c_6) = [1] x1 + [1] x2 + [11] p(c_7) = [1] p(c_8) = [1] Following rules are strictly oriented: power#(x',S(x)) = [4] x + [4] x' + [24] > [4] x + [4] x' + [20] = c_6(mult#(x',power(x',x)),power#(x',x)) Following rules are (at-least) weakly oriented: **** Step 5.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) **** Step 5.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.a:1.b:1: Failure MAYBE + Considered Problem: - Strict DPs: add0#(x',S(x)) -> c_2(add0#(x',x)) - Weak DPs: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> mult#(x',power(x',x)) power#(x',S(x)) -> power#(x',x) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 5.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak DPs: add0#(x',S(x)) -> c_2(add0#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) -->_1 add0#(x',S(x)) -> c_2(add0#(x',x)):3 -->_2 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):1 2:S:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):2 -->_1 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):1 3:W:add0#(x',S(x)) -> c_2(add0#(x',x)) -->_1 add0#(x',S(x)) -> c_2(add0#(x',x)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: add0#(x',S(x)) -> c_2(add0#(x',x)) ** Step 5.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)) -->_2 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):1 2:S:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):2 -->_1 mult#(x',S(x)) -> c_4(add0#(x',mult(x',x)),mult#(x',x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mult#(x',S(x)) -> c_4(mult#(x',x)) ** Step 5.b:3: Decompose MAYBE + Considered Problem: - Strict DPs: mult#(x',S(x)) -> c_4(mult#(x',x)) power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: mult#(x',S(x)) -> c_4(mult#(x',x)) - Weak DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} Problem (S) - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak DPs: mult#(x',S(x)) -> c_4(mult#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} *** Step 5.b:3.a:1: DecomposeDG MAYBE + Considered Problem: - Strict DPs: mult#(x',S(x)) -> c_4(mult#(x',x)) - Weak DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) and a lower component mult#(x',S(x)) -> c_4(mult#(x',x)) Further, following extension rules are added to the lower component. power#(x',S(x)) -> mult#(x',power(x',x)) power#(x',S(x)) -> power#(x',x) **** Step 5.b:3.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) The strictly oriented rules are moved into the weak component. ***** Step 5.b:3.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1,2} Following symbols are considered usable: {+#,add0#,mult#,power#} TcT has computed the following interpretation: p(+) = [2] x2 + [0] p(0) = [0] p(S) = [1] x1 + [9] p(add0) = [1] x2 + [0] p(mult) = [0] p(power) = [0] p(+#) = [0] p(add0#) = [0] p(mult#) = [2] p(power#) = [2] x2 + [5] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [2] p(c_6) = [4] x1 + [1] x2 + [1] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: power#(x',S(x)) = [2] x + [23] > [2] x + [14] = c_6(mult#(x',power(x',x)),power#(x',x)) Following rules are (at-least) weakly oriented: ***** Step 5.b:3.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 5.b:3.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) ***** Step 5.b:3.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 5.b:3.a:1.b:1: Failure MAYBE + Considered Problem: - Strict DPs: mult#(x',S(x)) -> c_4(mult#(x',x)) - Weak DPs: power#(x',S(x)) -> mult#(x',power(x',x)) power#(x',S(x)) -> power#(x',x) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak DPs: mult#(x',S(x)) -> c_4(mult#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_1 mult#(x',S(x)) -> c_4(mult#(x',x)):2 -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):1 2:W:mult#(x',S(x)) -> c_4(mult#(x',x)) -->_1 mult#(x',S(x)) -> c_4(mult#(x',x)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: mult#(x',S(x)) -> c_4(mult#(x',x)) *** Step 5.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)) -->_2 power#(x',S(x)) -> c_6(mult#(x',power(x',x)),power#(x',x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: power#(x',S(x)) -> c_6(power#(x',x)) *** Step 5.b:3.b:3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(power#(x',x)) - Weak TRS: +(x,S(0())) -> S(x) +(S(0()),y) -> S(y) add0(x,0()) -> x add0(x',S(x)) -> +(S(0()),add0(x',x)) mult(x,0()) -> 0() mult(x',S(x)) -> add0(x',mult(x',x)) power(x,0()) -> S(0()) power(x',S(x)) -> mult(x',power(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: power#(x',S(x)) -> c_6(power#(x',x)) *** Step 5.b:3.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(power#(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: power#(x',S(x)) -> c_6(power#(x',x)) The strictly oriented rules are moved into the weak component. **** Step 5.b:3.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: power#(x',S(x)) -> c_6(power#(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {+#,add0#,mult#,power#} TcT has computed the following interpretation: p(+) = [1] x2 + [2] p(0) = [0] p(S) = [1] x1 + [4] p(add0) = [1] x1 + [1] x2 + [2] p(mult) = [1] x2 + [1] p(power) = [8] x2 + [0] p(+#) = [1] x1 + [1] p(add0#) = [2] x1 + [1] p(mult#) = [8] x2 + [1] p(power#) = [4] x1 + [4] x2 + [0] p(c_1) = [0] p(c_2) = [2] x1 + [1] p(c_3) = [1] p(c_4) = [1] p(c_5) = [1] p(c_6) = [1] x1 + [14] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: power#(x',S(x)) = [4] x + [4] x' + [16] > [4] x + [4] x' + [14] = c_6(power#(x',x)) Following rules are (at-least) weakly oriented: **** Step 5.b:3.b:4.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',S(x)) -> c_6(power#(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:3.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: power#(x',S(x)) -> c_6(power#(x',x)) - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:power#(x',S(x)) -> c_6(power#(x',x)) -->_1 power#(x',S(x)) -> c_6(power#(x',x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: power#(x',S(x)) -> c_6(power#(x',x)) **** Step 5.b:3.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {+/2,add0/2,mult/2,power/2,+#/2,add0#/2,mult#/2,power#/2} / {0/0,S/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1 ,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {+#,add0#,mult#,power#} and constructors {0,S} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). MAYBE