WORST_CASE(?,O(n^2)) * Step 1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: log(s(0())) -> 0() log(s(s(X))) -> s(log(s(quot(X,s(s(0())))))) min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {log,min,quot} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs log#(s(0())) -> c_1() log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(X,0()) -> c_3() min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(0(),s(Y)) -> c_5() quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: log#(s(0())) -> c_1() log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(X,0()) -> c_3() min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(0(),s(Y)) -> c_5() quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: log(s(0())) -> 0() log(s(s(X))) -> s(log(s(quot(X,s(s(0())))))) min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) log#(s(0())) -> c_1() log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(X,0()) -> c_3() min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(0(),s(Y)) -> c_5() quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) * Step 3: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: log#(s(0())) -> c_1() log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(X,0()) -> c_3() min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(0(),s(Y)) -> c_5() quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5} by application of Pre({1,3,5}) = {2,4,6}. Here rules are labelled as follows: 1: log#(s(0())) -> c_1() 2: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) 3: min#(X,0()) -> c_3() 4: min#(s(X),s(Y)) -> c_4(min#(X,Y)) 5: quot#(0(),s(Y)) -> c_5() 6: quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak DPs: log#(s(0())) -> c_1() min#(X,0()) -> c_3() quot#(0(),s(Y)) -> c_5() - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) -->_2 quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)):3 -->_2 quot#(0(),s(Y)) -> c_5():6 -->_1 log#(s(0())) -> c_1():4 -->_1 log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))):1 2:S:min#(s(X),s(Y)) -> c_4(min#(X,Y)) -->_1 min#(X,0()) -> c_3():5 -->_1 min#(s(X),s(Y)) -> c_4(min#(X,Y)):2 3:S:quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_1 quot#(0(),s(Y)) -> c_5():6 -->_2 min#(X,0()) -> c_3():5 -->_1 quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)):3 -->_2 min#(s(X),s(Y)) -> c_4(min#(X,Y)):2 4:W:log#(s(0())) -> c_1() 5:W:min#(X,0()) -> c_3() 6:W:quot#(0(),s(Y)) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: log#(s(0())) -> c_1() 5: min#(X,0()) -> c_3() 6: quot#(0(),s(Y)) -> c_5() * Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) 2: min#(s(X),s(Y)) -> c_4(min#(X,Y)) 3: quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) The strictly oriented rules are moved into the weak component. ** Step 5.a:1: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1,2}, uargs(c_4) = {1}, uargs(c_6) = {1,2} Following symbols are considered usable: {min,quot,log#,min#,quot#} TcT has computed the following interpretation: p(0) = 0 p(log) = 0 p(min) = x1 p(quot) = x1 p(s) = 1 + x1 p(log#) = 3*x1^2 p(min#) = 1 + 2*x2 p(quot#) = 1 + 2*x1*x2 p(c_1) = 0 p(c_2) = x1 + x2 p(c_3) = 2 p(c_4) = x1 p(c_5) = 0 p(c_6) = x1 + x2 Following rules are strictly oriented: log#(s(s(X))) = 12 + 12*X + 3*X^2 > 4 + 10*X + 3*X^2 = c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(s(X),s(Y)) = 3 + 2*Y > 1 + 2*Y = c_4(min#(X,Y)) quot#(s(X),s(Y)) = 3 + 2*X + 2*X*Y + 2*Y > 2 + 2*X + 2*X*Y + 2*Y = c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) Following rules are (at-least) weakly oriented: min(X,0()) = X >= X = X min(s(X),s(Y)) = 1 + X >= X = min(X,Y) quot(0(),s(Y)) = 0 >= 0 = 0() quot(s(X),s(Y)) = 1 + X >= 1 + X = s(quot(min(X,Y),s(Y))) ** Step 5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) min#(s(X),s(Y)) -> c_4(min#(X,Y)) quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) -->_2 quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)):3 -->_1 log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))):1 2:W:min#(s(X),s(Y)) -> c_4(min#(X,Y)) -->_1 min#(s(X),s(Y)) -> c_4(min#(X,Y)):2 3:W:quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_1 quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)):3 -->_2 min#(s(X),s(Y)) -> c_4(min#(X,Y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: log#(s(s(X))) -> c_2(log#(s(quot(X,s(s(0()))))),quot#(X,s(s(0())))) 3: quot#(s(X),s(Y)) -> c_6(quot#(min(X,Y),s(Y)),min#(X,Y)) 2: min#(s(X),s(Y)) -> c_4(min#(X,Y)) ** Step 5.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: min(X,0()) -> X min(s(X),s(Y)) -> min(X,Y) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {log/1,min/2,quot/2,log#/1,min#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/1,c_5/0,c_6/2} - Obligation: innermost runtime complexity wrt. defined symbols {log#,min#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))