MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {min/2,plus/2,quot/2} / {0/0,Z/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {min,plus,quot} and constructors {0,Z,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) quot(0(),s(Y)) -> 0() quot(s(X),s(Y)) -> s(quot(min(X,Y),s(Y))) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: min#(X,0()) -> c_1() min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(0(),Y) -> c_4() plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(0(),s(Y)) -> c_6() quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,6} by application of Pre({1,4,6}) = {2,3,5,7}. Here rules are labelled as follows: 1: min#(X,0()) -> c_1() 2: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) 3: min#(s(X),s(Y)) -> c_3(min#(X,Y)) 4: plus#(0(),Y) -> c_4() 5: plus#(s(X),Y) -> c_5(plus#(X,Y)) 6: quot#(0(),s(Y)) -> c_6() 7: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak DPs: min#(X,0()) -> c_1() plus#(0(),Y) -> c_4() quot#(0(),s(Y)) -> c_6() - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) -->_2 plus#(s(X),Y) -> c_5(plus#(X,Y)):3 -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_2 plus#(0(),Y) -> c_4():6 -->_1 min#(X,0()) -> c_1():5 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 2:S:min#(s(X),s(Y)) -> c_3(min#(X,Y)) -->_1 min#(X,0()) -> c_1():5 -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 3:S:plus#(s(X),Y) -> c_5(plus#(X,Y)) -->_1 plus#(0(),Y) -> c_4():6 -->_1 plus#(s(X),Y) -> c_5(plus#(X,Y)):3 4:S:quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_1 quot#(0(),s(Y)) -> c_6():7 -->_2 min#(X,0()) -> c_1():5 -->_1 quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)):4 -->_2 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_2 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 5:W:min#(X,0()) -> c_1() 6:W:plus#(0(),Y) -> c_4() 7:W:quot#(0(),s(Y)) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: quot#(0(),s(Y)) -> c_6() 5: min#(X,0()) -> c_1() 6: plus#(0(),Y) -> c_4() * Step 5: Decompose MAYBE + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) - Weak DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} Problem (S) - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} ** Step 5.a:1: DecomposeDG MAYBE + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) - Weak DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) and a lower component min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) Further, following extension rules are added to the lower component. quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) *** Step 5.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) The strictly oriented rules are moved into the weak component. **** Step 5.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {min,min#,plus#,quot#} TcT has computed the following interpretation: p(0) = [5] p(Z) = [8] p(min) = [1] x1 + [0] p(plus) = [2] x1 + [1] x2 + [6] p(quot) = [1] x2 + [1] p(s) = [1] x1 + [2] p(min#) = [1] x2 + [0] p(plus#) = [1] x2 + [1] p(quot#) = [6] x1 + [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] x1 + [2] p(c_4) = [1] p(c_5) = [2] p(c_6) = [0] p(c_7) = [1] x1 + [10] Following rules are strictly oriented: quot#(s(X),s(Y)) = [6] X + [12] > [6] X + [10] = c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) Following rules are (at-least) weakly oriented: min(X,0()) = [1] X + [0] >= [1] X + [0] = X min(min(X,Y),Z()) = [1] X + [0] >= [1] X + [0] = min(X,plus(Y,Z())) min(s(X),s(Y)) = [1] X + [2] >= [1] X + [0] = min(X,Y) **** Step 5.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_1 quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) **** Step 5.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.a:1.b:1: DecomposeDG MAYBE + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) - Weak DPs: quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) and a lower component plus#(s(X),Y) -> c_5(plus#(X,Y)) Further, following extension rules are added to the lower component. min#(min(X,Y),Z()) -> min#(X,plus(Y,Z())) min#(min(X,Y),Z()) -> plus#(Y,Z()) min#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) **** Step 5.a:1.b:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) - Weak DPs: quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) 2: min#(s(X),s(Y)) -> c_3(min#(X,Y)) The strictly oriented rules are moved into the weak component. ***** Step 5.a:1.b:1.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) - Weak DPs: quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {min,min#,plus#,quot#} TcT has computed the following interpretation: p(0) = [1] p(Z) = [6] p(min) = [1] x1 + [2] p(plus) = [3] x2 + [0] p(quot) = [1] x1 + [2] x2 + [0] p(s) = [1] x1 + [8] p(min#) = [2] x1 + [0] p(plus#) = [0] p(quot#) = [2] x1 + [7] p(c_1) = [0] p(c_2) = [1] x1 + [8] x2 + [0] p(c_3) = [1] x1 + [13] p(c_4) = [1] p(c_5) = [1] x1 + [2] p(c_6) = [0] p(c_7) = [2] x1 + [1] x2 + [2] Following rules are strictly oriented: min#(min(X,Y),Z()) = [2] X + [4] > [2] X + [0] = c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) = [2] X + [16] > [2] X + [13] = c_3(min#(X,Y)) Following rules are (at-least) weakly oriented: quot#(s(X),s(Y)) = [2] X + [23] >= [2] X + [0] = min#(X,Y) quot#(s(X),s(Y)) = [2] X + [23] >= [2] X + [11] = quot#(min(X,Y),s(Y)) min(X,0()) = [1] X + [2] >= [1] X + [0] = X min(min(X,Y),Z()) = [1] X + [4] >= [1] X + [2] = min(X,plus(Y,Z())) min(s(X),s(Y)) = [1] X + [10] >= [1] X + [2] = min(X,Y) ***** Step 5.a:1.b:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 5.a:1.b:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 2:W:min#(s(X),s(Y)) -> c_3(min#(X,Y)) -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 3:W:quot#(s(X),s(Y)) -> min#(X,Y) -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):2 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):1 4:W:quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) -->_1 quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)):4 -->_1 quot#(s(X),s(Y)) -> min#(X,Y):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) 3: quot#(s(X),s(Y)) -> min#(X,Y) 1: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) 2: min#(s(X),s(Y)) -> c_3(min#(X,Y)) ***** Step 5.a:1.b:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 5.a:1.b:1.b:1: Failure MAYBE + Considered Problem: - Strict DPs: plus#(s(X),Y) -> c_5(plus#(X,Y)) - Weak DPs: min#(min(X,Y),Z()) -> min#(X,plus(Y,Z())) min#(min(X,Y),Z()) -> plus#(Y,Z()) min#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> min#(X,Y) quot#(s(X),s(Y)) -> quot#(min(X,Y),s(Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak DPs: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) min#(s(X),s(Y)) -> c_3(min#(X,Y)) plus#(s(X),Y) -> c_5(plus#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_2 min#(s(X),s(Y)) -> c_3(min#(X,Y)):3 -->_2 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):2 -->_1 quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)):1 2:W:min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) -->_2 plus#(s(X),Y) -> c_5(plus#(X,Y)):4 -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):3 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):2 3:W:min#(s(X),s(Y)) -> c_3(min#(X,Y)) -->_1 min#(s(X),s(Y)) -> c_3(min#(X,Y)):3 -->_1 min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())):2 4:W:plus#(s(X),Y) -> c_5(plus#(X,Y)) -->_1 plus#(s(X),Y) -> c_5(plus#(X,Y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: min#(s(X),s(Y)) -> c_3(min#(X,Y)) 2: min#(min(X,Y),Z()) -> c_2(min#(X,plus(Y,Z())),plus#(Y,Z())) 4: plus#(s(X),Y) -> c_5(plus#(X,Y)) ** Step 5.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/2} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)) -->_1 quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y)),min#(X,Y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) ** Step 5.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) The strictly oriented rules are moved into the weak component. *** Step 5.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {min,min#,plus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(Z) = [3] p(min) = [1] x1 + [0] p(plus) = [3] x2 + [12] p(quot) = [1] x1 + [1] x2 + [1] p(s) = [1] x1 + [8] p(min#) = [1] x1 + [1] x2 + [2] p(plus#) = [1] x1 + [1] p(quot#) = [1] x1 + [2] x2 + [0] p(c_1) = [1] p(c_2) = [8] x1 + [1] x2 + [8] p(c_3) = [1] x1 + [8] p(c_4) = [1] p(c_5) = [2] x1 + [2] p(c_6) = [1] p(c_7) = [1] x1 + [7] Following rules are strictly oriented: quot#(s(X),s(Y)) = [1] X + [2] Y + [24] > [1] X + [2] Y + [23] = c_7(quot#(min(X,Y),s(Y))) Following rules are (at-least) weakly oriented: min(X,0()) = [1] X + [0] >= [1] X + [0] = X min(min(X,Y),Z()) = [1] X + [0] >= [1] X + [0] = min(X,plus(Y,Z())) min(s(X),s(Y)) = [1] X + [8] >= [1] X + [0] = min(X,Y) *** Step 5.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) -->_1 quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: quot#(s(X),s(Y)) -> c_7(quot#(min(X,Y),s(Y))) *** Step 5.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: min(X,0()) -> X min(min(X,Y),Z()) -> min(X,plus(Y,Z())) min(s(X),s(Y)) -> min(X,Y) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) - Signature: {min/2,plus/2,quot/2,min#/2,plus#/2,quot#/2} / {0/0,Z/0,s/1,c_1/0,c_2/2,c_3/1,c_4/0,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {min#,plus#,quot#} and constructors {0,Z,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). MAYBE