MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k sum(cons(x,cons(y,l))) -> sum(cons(a(x,y,h()),l)) sum(cons(x,nil())) -> cons(x,nil()) - Signature: {a/3,app/2,sum/1} / {cons/2,h/0,nil/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,app,sum} and constructors {cons,h,nil,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(h(),h(),x) -> c_3() a#(s(x),h(),z) -> c_4(a#(x,z,z)) app#(l,nil()) -> c_5() app#(cons(x,l),k) -> c_6(app#(l,k)) app#(nil(),k) -> c_7() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) sum#(cons(x,nil())) -> c_9() Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(h(),h(),x) -> c_3() a#(s(x),h(),z) -> c_4(a#(x,z,z)) app#(l,nil()) -> c_5() app#(cons(x,l),k) -> c_6(app#(l,k)) app#(nil(),k) -> c_7() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) sum#(cons(x,nil())) -> c_9() - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k sum(cons(x,cons(y,l))) -> sum(cons(a(x,y,h()),l)) sum(cons(x,nil())) -> cons(x,nil()) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(h(),h(),x) -> c_3() a#(s(x),h(),z) -> c_4(a#(x,z,z)) app#(l,nil()) -> c_5() app#(cons(x,l),k) -> c_6(app#(l,k)) app#(nil(),k) -> c_7() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) sum#(cons(x,nil())) -> c_9() * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(h(),h(),x) -> c_3() a#(s(x),h(),z) -> c_4(a#(x,z,z)) app#(l,nil()) -> c_5() app#(cons(x,l),k) -> c_6(app#(l,k)) app#(nil(),k) -> c_7() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) sum#(cons(x,nil())) -> c_9() - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,5,7,9} by application of Pre({3,5,7,9}) = {1,2,4,6,8}. Here rules are labelled as follows: 1: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) 2: a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) 3: a#(h(),h(),x) -> c_3() 4: a#(s(x),h(),z) -> c_4(a#(x,z,z)) 5: app#(l,nil()) -> c_5() 6: app#(cons(x,l),k) -> c_6(app#(l,k)) 7: app#(nil(),k) -> c_7() 8: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) 9: sum#(cons(x,nil())) -> c_9() * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak DPs: a#(h(),h(),x) -> c_3() app#(l,nil()) -> c_5() app#(nil(),k) -> c_7() sum#(cons(x,nil())) -> c_9() - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 -->_1 a#(h(),h(),x) -> c_3():6 2:S:a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_1 a#(h(),h(),x) -> c_3():6 -->_2 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 -->_2 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):1 -->_1 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):1 3:S:a#(s(x),h(),z) -> c_4(a#(x,z,z)) -->_1 a#(h(),h(),x) -> c_3():6 -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 4:S:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(nil(),k) -> c_7():8 -->_1 app#(l,nil()) -> c_5():7 -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):4 5:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) -->_1 sum#(cons(x,nil())) -> c_9():9 -->_2 a#(h(),h(),x) -> c_3():6 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())):5 -->_2 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_2 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):1 6:W:a#(h(),h(),x) -> c_3() 7:W:app#(l,nil()) -> c_5() 8:W:app#(nil(),k) -> c_7() 9:W:sum#(cons(x,nil())) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: sum#(cons(x,nil())) -> c_9() 7: app#(l,nil()) -> c_5() 8: app#(nil(),k) -> c_7() 6: a#(h(),h(),x) -> c_3() * Step 5: Decompose MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) - Weak DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0 ,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} Problem (S) - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0 ,c_8/2,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} ** Step 5.a:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) - Weak DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 2:S:a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) -->_2 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):1 -->_1 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):1 -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_2 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 3:S:a#(s(x),h(),z) -> c_4(a#(x,z,z)) -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):2 -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 4:W:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):4 5:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) -->_2 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):1 -->_2 a#(s(x),h(),z) -> c_4(a#(x,z,z)):3 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: app#(cons(x,l),k) -> c_6(app#(l,k)) ** Step 5.a:2: DecomposeDG MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) and a lower component a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) Further, following extension rules are added to the lower component. sum#(cons(x,cons(y,l))) -> a#(x,y,h()) sum#(cons(x,cons(y,l))) -> sum#(cons(a(x,y,h()),l)) *** Step 5.a:2.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) The strictly oriented rules are moved into the weak component. **** Step 5.a:2.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {a#,app#,sum#} TcT has computed the following interpretation: p(a) = [1] x1 + [3] x2 + [8] p(app) = [2] x1 + [0] p(cons) = [1] x2 + [2] p(h) = [1] p(nil) = [1] p(s) = [1] x1 + [7] p(sum) = [1] p(a#) = [1] x3 + [0] p(app#) = [1] x1 + [2] p(sum#) = [4] x1 + [4] p(c_1) = [1] p(c_2) = [1] x1 + [1] x2 + [1] p(c_3) = [1] p(c_4) = [2] x1 + [1] p(c_5) = [2] p(c_6) = [1] x1 + [1] p(c_7) = [1] p(c_8) = [1] x1 + [1] x2 + [0] p(c_9) = [0] Following rules are strictly oriented: sum#(cons(x,cons(y,l))) = [4] l + [20] > [4] l + [13] = c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) Following rules are (at-least) weakly oriented: **** Step 5.a:2.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.a:2.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) **** Step 5.a:2.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.a:2.b:1: Failure MAYBE + Considered Problem: - Strict DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) - Weak DPs: sum#(cons(x,cons(y,l))) -> a#(x,y,h()) sum#(cons(x,cons(y,l))) -> sum#(cons(a(x,y,h()),l)) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak DPs: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) a#(s(x),h(),z) -> c_4(a#(x,z,z)) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):1 2:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) -->_2 a#(s(x),h(),z) -> c_4(a#(x,z,z)):5 -->_2 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):3 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())):2 3:W:a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):5 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):4 4:W:a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):5 -->_2 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):4 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):4 -->_2 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):3 -->_1 a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))):3 5:W:a#(s(x),h(),z) -> c_4(a#(x,z,z)) -->_1 a#(s(x),h(),z) -> c_4(a#(x,z,z)):5 -->_1 a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: a#(s(x),h(),z) -> c_4(a#(x,z,z)) 4: a#(x,s(y),s(z)) -> c_2(a#(x,y,a(x,s(y),z)),a#(x,s(y),z)) 3: a#(x,s(y),h()) -> c_1(a#(x,y,s(h()))) ** Step 5.b:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):1 2:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l)),a#(x,y,h())):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) ** Step 5.b:3: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0 ,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} Problem (S) - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0 ,c_8/1,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} *** Step 5.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):1 2:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) *** Step 5.b:3.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: app#(cons(x,l),k) -> c_6(app#(l,k)) *** Step 5.b:3.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: app#(cons(x,l),k) -> c_6(app#(l,k)) The strictly oriented rules are moved into the weak component. **** Step 5.b:3.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {a#,app#,sum#} TcT has computed the following interpretation: p(a) = [1] p(app) = [1] p(cons) = [1] x2 + [4] p(h) = [0] p(nil) = [0] p(s) = [1] x1 + [1] p(sum) = [4] x1 + [0] p(a#) = [2] x3 + [8] p(app#) = [4] x1 + [8] x2 + [8] p(sum#) = [1] x1 + [1] p(c_1) = [1] x1 + [4] p(c_2) = [1] x1 + [1] x2 + [0] p(c_3) = [8] p(c_4) = [2] x1 + [0] p(c_5) = [1] p(c_6) = [1] x1 + [8] p(c_7) = [0] p(c_8) = [8] p(c_9) = [0] Following rules are strictly oriented: app#(cons(x,l),k) = [8] k + [4] l + [24] > [8] k + [4] l + [16] = c_6(app#(l,k)) Following rules are (at-least) weakly oriented: **** Step 5.b:3.a:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:3.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: app#(cons(x,l),k) -> c_6(app#(l,k)) **** Step 5.b:3.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak DPs: app#(cons(x,l),k) -> c_6(app#(l,k)) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))):1 2:W:app#(cons(x,l),k) -> c_6(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_6(app#(l,k)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: app#(cons(x,l),k) -> c_6(app#(l,k)) *** Step 5.b:3.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) The strictly oriented rules are moved into the weak component. **** Step 5.b:3.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {a#,app#,sum#} TcT has computed the following interpretation: p(a) = [2] x3 + [0] p(app) = [1] x1 + [1] x2 + [4] p(cons) = [1] x2 + [1] p(h) = [0] p(nil) = [4] p(s) = [3] p(sum) = [1] x1 + [0] p(a#) = [1] x1 + [4] x3 + [2] p(app#) = [4] x1 + [1] p(sum#) = [8] x1 + [0] p(c_1) = [1] p(c_2) = [2] x1 + [2] x2 + [0] p(c_3) = [0] p(c_4) = [2] p(c_5) = [1] p(c_6) = [1] x1 + [1] p(c_7) = [0] p(c_8) = [1] x1 + [7] p(c_9) = [0] Following rules are strictly oriented: sum#(cons(x,cons(y,l))) = [8] l + [16] > [8] l + [15] = c_8(sum#(cons(a(x,y,h()),l))) Following rules are (at-least) weakly oriented: **** Step 5.b:3.b:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:3.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(a(x,y,h()),l))) **** Step 5.b:3.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(x,s(y),h()) -> a(x,y,s(h())) a(x,s(y),s(z)) -> a(x,y,a(x,s(y),z)) a(h(),h(),x) -> s(x) a(s(x),h(),z) -> a(x,z,z) - Signature: {a/3,app/2,sum/1,a#/3,app#/2,sum#/1} / {cons/2,h/0,nil/0,s/1,c_1/1,c_2/2,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1 ,c_9/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,app#,sum#} and constructors {cons,h,nil,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). MAYBE