WORST_CASE(?,O(n^1)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() d(s(X)) -> s(s(d(X))) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(X,0()) -> X p(0(),X) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) q(0()) -> 0() q(s(X)) -> s(p(q(X),d(X))) s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,d,f,p,q,s,t} and constructors {0,cs,nf,nil,ns,nt,r} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. d(s(X)) -> s(s(d(X))) f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) p(s(X),s(Y)) -> s(s(p(X,Y))) q(s(X)) -> s(p(q(X),d(X))) All above mentioned rules can be savely removed. * Step 2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() p(X,0()) -> X p(0(),X) -> X q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1} - Obligation: innermost runtime complexity wrt. defined symbols {a,d,f,p,q,s,t} and constructors {0,cs,nf,nil,ns,nt,r} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) d#(0()) -> c_5() f#(X1,X2) -> c_6() f#(0(),X) -> c_7() p#(X,0()) -> c_8() p#(0(),X) -> c_9() q#(0()) -> c_10() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) d#(0()) -> c_5() f#(X1,X2) -> c_6() f#(0(),X) -> c_7() p#(X,0()) -> c_8() p#(0(),X) -> c_9() q#(0()) -> c_10() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) d(0()) -> 0() f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() p(X,0()) -> X p(0(),X) -> X q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) d#(0()) -> c_5() f#(X1,X2) -> c_6() f#(0(),X) -> c_7() p#(X,0()) -> c_8() p#(0(),X) -> c_9() q#(0()) -> c_10() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() * Step 4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) d#(0()) -> c_5() f#(X1,X2) -> c_6() f#(0(),X) -> c_7() p#(X,0()) -> c_8() p#(0(),X) -> c_9() q#(0()) -> c_10() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() - Strict TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cs) = {1}, uargs(f) = {1,2}, uargs(r) = {1}, uargs(s) = {1}, uargs(t) = {1}, uargs(f#) = {1,2}, uargs(s#) = {1}, uargs(t#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_12) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(a) = [4] x1 + [1] p(cs) = [1] x1 + [0] p(d) = [0] p(f) = [1] x1 + [1] x2 + [14] p(nf) = [1] x1 + [1] x2 + [4] p(nil) = [0] p(ns) = [1] x1 + [4] p(nt) = [1] x1 + [6] p(p) = [1] x2 + [0] p(q) = [1] x1 + [2] p(r) = [1] x1 + [3] p(s) = [1] x1 + [8] p(t) = [1] x1 + [8] p(a#) = [5] x1 + [0] p(d#) = [0] p(f#) = [1] x1 + [1] x2 + [0] p(p#) = [5] p(q#) = [1] x1 + [13] p(s#) = [1] x1 + [0] p(t#) = [1] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] p(c_6) = [1] p(c_7) = [8] p(c_8) = [2] p(c_9) = [2] p(c_10) = [2] p(c_11) = [1] p(c_12) = [1] x1 + [5] p(c_13) = [0] Following rules are strictly oriented: a#(nf(X1,X2)) = [5] X1 + [5] X2 + [20] > [4] X1 + [4] X2 + [2] = c_2(f#(a(X1),a(X2))) a#(ns(X)) = [5] X + [20] > [4] X + [1] = c_3(s#(a(X))) a#(nt(X)) = [5] X + [30] > [4] X + [1] = c_4(t#(a(X))) p#(X,0()) = [5] > [2] = c_8() p#(0(),X) = [5] > [2] = c_9() q#(0()) = [13] > [2] = c_10() a(X) = [4] X + [1] > [1] X + [0] = X a(nf(X1,X2)) = [4] X1 + [4] X2 + [17] > [4] X1 + [4] X2 + [16] = f(a(X1),a(X2)) a(ns(X)) = [4] X + [17] > [4] X + [9] = s(a(X)) a(nt(X)) = [4] X + [25] > [4] X + [9] = t(a(X)) f(X1,X2) = [1] X1 + [1] X2 + [14] > [1] X1 + [1] X2 + [4] = nf(X1,X2) f(0(),X) = [1] X + [14] > [0] = nil() q(0()) = [2] > [0] = 0() s(X) = [1] X + [8] > [1] X + [4] = ns(X) t(N) = [1] N + [8] > [1] N + [5] = cs(r(q(N)),nt(ns(N))) t(X) = [1] X + [8] > [1] X + [6] = nt(X) Following rules are (at-least) weakly oriented: a#(X) = [5] X + [0] >= [0] = c_1() d#(0()) = [0] >= [1] = c_5() f#(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] = c_6() f#(0(),X) = [1] X + [0] >= [8] = c_7() s#(X) = [1] X + [0] >= [1] = c_11() t#(N) = [1] N + [0] >= [1] N + [18] = c_12(q#(N)) t#(X) = [1] X + [0] >= [0] = c_13() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: a#(X) -> c_1() d#(0()) -> c_5() f#(X1,X2) -> c_6() f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) p#(X,0()) -> c_8() p#(0(),X) -> c_9() q#(0()) -> c_10() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {}. Here rules are labelled as follows: 1: a#(X) -> c_1() 2: d#(0()) -> c_5() 3: f#(X1,X2) -> c_6() 4: f#(0(),X) -> c_7() 5: s#(X) -> c_11() 6: t#(N) -> c_12(q#(N)) 7: t#(X) -> c_13() 8: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) 9: a#(ns(X)) -> c_3(s#(a(X))) 10: a#(nt(X)) -> c_4(t#(a(X))) 11: p#(X,0()) -> c_8() 12: p#(0(),X) -> c_9() 13: q#(0()) -> c_10() * Step 6: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X1,X2) -> c_6() f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() - Weak DPs: a#(X) -> c_1() a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) d#(0()) -> c_5() p#(X,0()) -> c_8() p#(0(),X) -> c_9() q#(0()) -> c_10() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(X1,X2) -> c_6() 2:S:f#(0(),X) -> c_7() 3:S:s#(X) -> c_11() 4:S:t#(N) -> c_12(q#(N)) -->_1 q#(0()) -> c_10():13 5:S:t#(X) -> c_13() 6:W:a#(X) -> c_1() 7:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(0(),X) -> c_7():2 -->_1 f#(X1,X2) -> c_6():1 8:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():3 9:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(X) -> c_13():5 -->_1 t#(N) -> c_12(q#(N)):4 10:W:d#(0()) -> c_5() 11:W:p#(X,0()) -> c_8() 12:W:p#(0(),X) -> c_9() 13:W:q#(0()) -> c_10() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 12: p#(0(),X) -> c_9() 11: p#(X,0()) -> c_8() 10: d#(0()) -> c_5() 6: a#(X) -> c_1() 13: q#(0()) -> c_10() * Step 7: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X1,X2) -> c_6() f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12(q#(N)) t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/1,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(X1,X2) -> c_6() 2:S:f#(0(),X) -> c_7() 3:S:s#(X) -> c_11() 4:S:t#(N) -> c_12(q#(N)) 5:S:t#(X) -> c_13() 7:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(0(),X) -> c_7():2 -->_1 f#(X1,X2) -> c_6():1 8:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():3 9:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(X) -> c_13():5 -->_1 t#(N) -> c_12(q#(N)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: t#(N) -> c_12() * Step 8: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X1,X2) -> c_6() f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: f#(X1,X2) -> c_6() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} Problem (S) - Strict DPs: f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) f#(X1,X2) -> c_6() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} ** Step 8.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X1,X2) -> c_6() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(X1,X2) -> c_6() 2:W:f#(0(),X) -> c_7() 3:W:s#(X) -> c_11() 4:W:t#(N) -> c_12() 5:W:t#(X) -> c_13() 6:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(X1,X2) -> c_6():1 -->_1 f#(0(),X) -> c_7():2 7:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():3 8:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(N) -> c_12():4 -->_1 t#(X) -> c_13():5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: a#(nt(X)) -> c_4(t#(a(X))) 7: a#(ns(X)) -> c_3(s#(a(X))) 5: t#(X) -> c_13() 4: t#(N) -> c_12() 3: s#(X) -> c_11() 2: f#(0(),X) -> c_7() ** Step 8.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(X1,X2) -> c_6() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:f#(X1,X2) -> c_6() 6:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(X1,X2) -> c_6():1 The dependency graph contains no loops, we remove all dependency pairs. ** Step 8.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 8.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) f#(X1,X2) -> c_6() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(0(),X) -> c_7() 2:S:s#(X) -> c_11() 3:S:t#(N) -> c_12() 4:S:t#(X) -> c_13() 5:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(X1,X2) -> c_6():8 -->_1 f#(0(),X) -> c_7():1 6:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():2 7:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(X) -> c_13():4 -->_1 t#(N) -> c_12():3 8:W:f#(X1,X2) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: f#(X1,X2) -> c_6() ** Step 8.b:2: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),X) -> c_7() s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: f#(0(),X) -> c_7() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} Problem (S) - Strict DPs: s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) f#(0(),X) -> c_7() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} *** Step 8.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),X) -> c_7() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(0(),X) -> c_7() 2:W:s#(X) -> c_11() 3:W:t#(N) -> c_12() 4:W:t#(X) -> c_13() 5:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(0(),X) -> c_7():1 6:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():2 7:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(N) -> c_12():3 -->_1 t#(X) -> c_13():4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: a#(nt(X)) -> c_4(t#(a(X))) 6: a#(ns(X)) -> c_3(s#(a(X))) 4: t#(X) -> c_13() 3: t#(N) -> c_12() 2: s#(X) -> c_11() *** Step 8.b:2.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(0(),X) -> c_7() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:f#(0(),X) -> c_7() 5:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(0(),X) -> c_7():1 The dependency graph contains no loops, we remove all dependency pairs. *** Step 8.b:2.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 8.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) f#(0(),X) -> c_7() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:s#(X) -> c_11() 2:S:t#(N) -> c_12() 3:S:t#(X) -> c_13() 4:W:a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) -->_1 f#(0(),X) -> c_7():7 5:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():1 6:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(X) -> c_13():3 -->_1 t#(N) -> c_12():2 7:W:f#(0(),X) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: a#(nf(X1,X2)) -> c_2(f#(a(X1),a(X2))) 7: f#(0(),X) -> c_7() *** Step 8.b:2.b:2: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_11() t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: s#(X) -> c_11() - Weak DPs: a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) t#(N) -> c_12() t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} Problem (S) - Strict DPs: t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) s#(X) -> c_11() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} **** Step 8.b:2.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_11() - Weak DPs: a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) t#(N) -> c_12() t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:s#(X) -> c_11() 2:W:t#(N) -> c_12() 3:W:t#(X) -> c_13() 5:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():1 6:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(N) -> c_12():2 -->_1 t#(X) -> c_13():3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: a#(nt(X)) -> c_4(t#(a(X))) 3: t#(X) -> c_13() 2: t#(N) -> c_12() **** Step 8.b:2.b:2.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_11() - Weak DPs: a#(ns(X)) -> c_3(s#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:s#(X) -> c_11() 5:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():1 The dependency graph contains no loops, we remove all dependency pairs. **** Step 8.b:2.b:2.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 8.b:2.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(ns(X)) -> c_3(s#(a(X))) a#(nt(X)) -> c_4(t#(a(X))) s#(X) -> c_11() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:t#(N) -> c_12() 2:S:t#(X) -> c_13() 3:W:a#(ns(X)) -> c_3(s#(a(X))) -->_1 s#(X) -> c_11():5 4:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(X) -> c_13():2 -->_1 t#(N) -> c_12():1 5:W:s#(X) -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: a#(ns(X)) -> c_3(s#(a(X))) 5: s#(X) -> c_11() **** Step 8.b:2.b:2.b:2: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(N) -> c_12() t#(X) -> c_13() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: t#(N) -> c_12() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} Problem (S) - Strict DPs: t#(X) -> c_13() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) t#(N) -> c_12() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1 ,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns ,nt,r} ***** Step 8.b:2.b:2.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(N) -> c_12() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) t#(X) -> c_13() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:t#(N) -> c_12() 2:W:t#(X) -> c_13() 4:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(N) -> c_12():1 -->_1 t#(X) -> c_13():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: t#(X) -> c_13() ***** Step 8.b:2.b:2.b:2.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(N) -> c_12() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:t#(N) -> c_12() 4:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(N) -> c_12():1 The dependency graph contains no loops, we remove all dependency pairs. ***** Step 8.b:2.b:2.b:2.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ***** Step 8.b:2.b:2.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(X) -> c_13() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) t#(N) -> c_12() - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:t#(X) -> c_13() 2:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(N) -> c_12():3 -->_1 t#(X) -> c_13():1 3:W:t#(N) -> c_12() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: t#(N) -> c_12() ***** Step 8.b:2.b:2.b:2.b:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: t#(X) -> c_13() - Weak DPs: a#(nt(X)) -> c_4(t#(a(X))) - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:t#(X) -> c_13() 2:W:a#(nt(X)) -> c_4(t#(a(X))) -->_1 t#(X) -> c_13():1 The dependency graph contains no loops, we remove all dependency pairs. ***** Step 8.b:2.b:2.b:2.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: a(X) -> X a(nf(X1,X2)) -> f(a(X1),a(X2)) a(ns(X)) -> s(a(X)) a(nt(X)) -> t(a(X)) f(X1,X2) -> nf(X1,X2) f(0(),X) -> nil() q(0()) -> 0() s(X) -> ns(X) t(N) -> cs(r(q(N)),nt(ns(N))) t(X) -> nt(X) - Signature: {a/1,d/1,f/2,p/2,q/1,s/1,t/1,a#/1,d#/1,f#/2,p#/2,q#/1,s#/1,t#/1} / {0/0,cs/2,nf/2,nil/0,ns/1,nt/1,r/1,c_1/0 ,c_2/1,c_3/1,c_4/1,c_5/0,c_6/0,c_7/0,c_8/0,c_9/0,c_10/0,c_11/0,c_12/0,c_13/0} - Obligation: innermost runtime complexity wrt. defined symbols {a#,d#,f#,p#,q#,s#,t#} and constructors {0,cs,nf,nil,ns,nt ,r} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))