MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z)) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) terms(N) -> cons(recip(sqr(N)),terms(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1} / {0/0,cons/2,nil/0,recip/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {add,dbl,first,sqr,terms} and constructors {0,cons,nil ,recip,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) dbl#(0()) -> c_3() dbl#(s(X)) -> c_4(dbl#(X)) first#(0(),X) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(0()) -> c_7() sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) dbl#(0()) -> c_3() dbl#(s(X)) -> c_4(dbl#(X)) first#(0(),X) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(0()) -> c_7() sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) first(0(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,first(X,Z)) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) terms(N) -> cons(recip(sqr(N)),terms(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) dbl#(0()) -> c_3() dbl#(s(X)) -> c_4(dbl#(X)) first#(0(),X) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(0()) -> c_7() sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) dbl#(0()) -> c_3() dbl#(s(X)) -> c_4(dbl#(X)) first#(0(),X) -> c_5() first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(0()) -> c_7() sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,5,7} by application of Pre({1,3,5,7}) = {2,4,6,8,9}. Here rules are labelled as follows: 1: add#(0(),X) -> c_1() 2: add#(s(X),Y) -> c_2(add#(X,Y)) 3: dbl#(0()) -> c_3() 4: dbl#(s(X)) -> c_4(dbl#(X)) 5: first#(0(),X) -> c_5() 6: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) 7: sqr#(0()) -> c_7() 8: sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) 9: terms#(N) -> c_9(sqr#(N),terms#(s(N))) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: add#(0(),X) -> c_1() dbl#(0()) -> c_3() first#(0(),X) -> c_5() sqr#(0()) -> c_7() - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(0(),X) -> c_1():6 -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 2:S:dbl#(s(X)) -> c_4(dbl#(X)) -->_1 dbl#(0()) -> c_3():7 -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2 3:S:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(0(),X) -> c_5():8 -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):3 4:S:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_2 sqr#(0()) -> c_7():9 -->_3 dbl#(0()) -> c_3():7 -->_1 add#(0(),X) -> c_1():6 -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4 -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2 -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 5:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_1 sqr#(0()) -> c_7():9 -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):5 -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4 6:W:add#(0(),X) -> c_1() 7:W:dbl#(0()) -> c_3() 8:W:first#(0(),X) -> c_5() 9:W:sqr#(0()) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 9: sqr#(0()) -> c_7() 8: first#(0(),X) -> c_5() 7: dbl#(0()) -> c_3() 6: add#(0(),X) -> c_1() * Step 5: Decompose MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} Problem (S) - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} ** Step 5.a:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 2:W:dbl#(s(X)) -> c_4(dbl#(X)) -->_1 dbl#(s(X)) -> c_4(dbl#(X)):2 3:W:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):3 4:W:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 -->_3 dbl#(s(X)) -> c_4(dbl#(X)):2 -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4 5:W:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4 -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) 2: dbl#(s(X)) -> c_4(dbl#(X)) ** Step 5.a:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 4:W:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4 5:W:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):4 -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):5 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X)) ** Step 5.a:3: Failure MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 5.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:dbl#(s(X)) -> c_4(dbl#(X)) -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1 2:S:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):2 3:S:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):5 -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3 -->_3 dbl#(s(X)) -> c_4(dbl#(X)):1 4:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):4 -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3 5:W:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: add#(s(X),Y) -> c_2(add#(X,Y)) ** Step 5.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/3,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:dbl#(s(X)) -> c_4(dbl#(X)) -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1 2:S:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):2 3:S:sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)) -->_2 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3 -->_3 dbl#(s(X)) -> c_4(dbl#(X)):1 4:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):4 -->_1 sqr#(s(X)) -> c_8(add#(sqr(X),dbl(X)),sqr#(X),dbl#(X)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) ** Step 5.b:3: UsableRules MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) dbl(0()) -> 0() dbl(s(X)) -> s(s(dbl(X))) sqr(0()) -> 0() sqr(s(X)) -> s(add(sqr(X),dbl(X))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) ** Step 5.b:4: Decompose MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) - Weak DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} Problem (S) - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: dbl#(s(X)) -> c_4(dbl#(X)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} *** Step 5.b:4.a:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) - Weak DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:dbl#(s(X)) -> c_4(dbl#(X)) -->_1 dbl#(s(X)) -> c_4(dbl#(X)):1 2:W:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):2 3:W:sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) -->_2 dbl#(s(X)) -> c_4(dbl#(X)):1 -->_1 sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)):3 4:W:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_1 sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)):3 -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) *** Step 5.b:4.a:2: Failure MAYBE + Considered Problem: - Strict DPs: dbl#(s(X)) -> c_4(dbl#(X)) - Weak DPs: sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. *** Step 5.b:4.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: dbl#(s(X)) -> c_4(dbl#(X)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):1 2:S:sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) -->_2 dbl#(s(X)) -> c_4(dbl#(X)):4 -->_1 sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)):2 3:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):3 -->_1 sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)):2 4:W:dbl#(s(X)) -> c_4(dbl#(X)) -->_1 dbl#(s(X)) -> c_4(dbl#(X)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: dbl#(s(X)) -> c_4(dbl#(X)) *** Step 5.b:4.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/2,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):1 2:S:sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)) -->_1 sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)):2 3:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):3 -->_1 sqr#(s(X)) -> c_8(sqr#(X),dbl#(X)):2 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sqr#(s(X)) -> c_8(sqr#(X)) *** Step 5.b:4.b:3: Decompose MAYBE + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) sqr#(s(X)) -> c_8(sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Weak DPs: sqr#(s(X)) -> c_8(sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} Problem (S) - Strict DPs: sqr#(s(X)) -> c_8(sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} **** Step 5.b:4.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Weak DPs: sqr#(s(X)) -> c_8(sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):1 2:W:sqr#(s(X)) -> c_8(sqr#(X)) -->_1 sqr#(s(X)) -> c_8(sqr#(X)):2 3:W:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_1 sqr#(s(X)) -> c_8(sqr#(X)):2 -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: terms#(N) -> c_9(sqr#(N),terms#(s(N))) 2: sqr#(s(X)) -> c_8(sqr#(X)) **** Step 5.b:4.b:3.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) The strictly oriented rules are moved into the weak component. ***** Step 5.b:4.b:3.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {add#,dbl#,first#,sqr#,terms#} TcT has computed the following interpretation: p(0) = [0] p(add) = [0] p(cons) = [1] x2 + [2] p(dbl) = [4] x1 + [8] p(first) = [2] x1 + [1] x2 + [1] p(nil) = [1] p(recip) = [0] p(s) = [1] x1 + [0] p(sqr) = [1] x1 + [0] p(terms) = [8] x1 + [0] p(add#) = [2] x1 + [1] p(dbl#) = [1] p(first#) = [8] x1 + [4] x2 + [0] p(sqr#) = [0] p(terms#) = [1] x1 + [1] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [4] p(c_5) = [0] p(c_6) = [1] x1 + [0] p(c_7) = [8] p(c_8) = [2] x1 + [1] p(c_9) = [1] x2 + [1] Following rules are strictly oriented: first#(s(X),cons(Y,Z)) = [8] X + [4] Z + [8] > [8] X + [4] Z + [0] = c_6(first#(X,Z)) Following rules are (at-least) weakly oriented: ***** Step 5.b:4.b:3.a:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 5.b:4.b:3.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) ***** Step 5.b:4.b:3.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 5.b:4.b:3.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: sqr#(s(X)) -> c_8(sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:sqr#(s(X)) -> c_8(sqr#(X)) -->_1 sqr#(s(X)) -> c_8(sqr#(X)):1 2:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):2 -->_1 sqr#(s(X)) -> c_8(sqr#(X)):1 3:W:first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) -->_1 first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: first#(s(X),cons(Y,Z)) -> c_6(first#(X,Z)) **** Step 5.b:4.b:3.b:2: Decompose MAYBE + Considered Problem: - Strict DPs: sqr#(s(X)) -> c_8(sqr#(X)) terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: sqr#(s(X)) -> c_8(sqr#(X)) - Weak DPs: terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} Problem (S) - Strict DPs: terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: sqr#(s(X)) -> c_8(sqr#(X)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} ***** Step 5.b:4.b:3.b:2.a:1: Failure MAYBE + Considered Problem: - Strict DPs: sqr#(s(X)) -> c_8(sqr#(X)) - Weak DPs: terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. ***** Step 5.b:4.b:3.b:2.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Weak DPs: sqr#(s(X)) -> c_8(sqr#(X)) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_1 sqr#(s(X)) -> c_8(sqr#(X)):2 -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):1 2:W:sqr#(s(X)) -> c_8(sqr#(X)) -->_1 sqr#(s(X)) -> c_8(sqr#(X)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: sqr#(s(X)) -> c_8(sqr#(X)) ***** Step 5.b:4.b:3.b:2.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: terms#(N) -> c_9(sqr#(N),terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/2} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:terms#(N) -> c_9(sqr#(N),terms#(s(N))) -->_2 terms#(N) -> c_9(sqr#(N),terms#(s(N))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: terms#(N) -> c_9(terms#(s(N))) ***** Step 5.b:4.b:3.b:2.b:3: Failure MAYBE + Considered Problem: - Strict DPs: terms#(N) -> c_9(terms#(s(N))) - Signature: {add/2,dbl/1,first/2,sqr/1,terms/1,add#/2,dbl#/1,first#/2,sqr#/1,terms#/1} / {0/0,cons/2,nil/0,recip/1,s/1 ,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1,c_7/0,c_8/1,c_9/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,dbl#,first#,sqr#,terms#} and constructors {0,cons ,nil,recip,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE