MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib(N) -> sel(N,fib1(s(0()),s(0()))) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,XS) - Signature: {add/2,fib/1,fib1/2,sel/2} / {0/0,cons/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {add,fib,fib1,sel} and constructors {0,cons,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(0(),cons(X,XS)) -> c_5() sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(0(),cons(X,XS)) -> c_5() sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib(N) -> sel(N,fib1(s(0()),s(0()))) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) sel(0(),cons(X,XS)) -> X sel(s(N),cons(X,XS)) -> sel(N,XS) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(0(),cons(X,XS)) -> c_5() sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: add#(0(),X) -> c_1() add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(0(),cons(X,XS)) -> c_5() sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,5} by application of Pre({1,5}) = {2,3,4,6}. Here rules are labelled as follows: 1: add#(0(),X) -> c_1() 2: add#(s(X),Y) -> c_2(add#(X,Y)) 3: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) 4: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) 5: sel#(0(),cons(X,XS)) -> c_5() 6: sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) * Step 4: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak DPs: add#(0(),X) -> c_1() sel#(0(),cons(X,XS)) -> c_5() - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(0(),X) -> c_1():5 -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 2:S:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):4 -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):3 -->_1 sel#(0(),cons(X,XS)) -> c_5():6 3:S:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) -->_2 add#(0(),X) -> c_1():5 -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):3 -->_2 add#(s(X),Y) -> c_2(add#(X,Y)):1 4:S:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(0(),cons(X,XS)) -> c_5():6 -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):4 5:W:add#(0(),X) -> c_1() 6:W:sel#(0(),cons(X,XS)) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: sel#(0(),cons(X,XS)) -> c_5() 5: add#(0(),X) -> c_1() * Step 5: Decompose MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} Problem (S) - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} ** Step 5.a:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 2:W:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):4 -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):3 3:W:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) -->_2 add#(s(X),Y) -> c_2(add#(X,Y)):1 -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):3 4:W:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) ** Step 5.a:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):1 2:W:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):3 3:W:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) -->_2 add#(s(X),Y) -> c_2(add#(X,Y)):1 -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: fib#(N) -> c_3(fib1#(s(0()),s(0()))) ** Step 5.a:3: UsableRules MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: fib#(N) -> c_3(fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) add#(s(X),Y) -> c_2(add#(X,Y)) fib#(N) -> c_3(fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) ** Step 5.a:4: Failure MAYBE + Considered Problem: - Strict DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak DPs: fib#(N) -> c_3(fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 5.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak DPs: add#(s(X),Y) -> c_2(add#(X,Y)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):2 2:S:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) -->_2 add#(s(X),Y) -> c_2(add#(X,Y)):4 -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):2 3:S:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 4:W:add#(s(X),Y) -> c_2(add#(X,Y)) -->_1 add#(s(X),Y) -> c_2(add#(X,Y)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: add#(s(X),Y) -> c_2(add#(X,Y)) ** Step 5.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/2,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):2 2:S:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)) -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y)),add#(X,Y)):2 3:S:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) ** Step 5.b:3: Decompose MAYBE + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} Problem (S) - Strict DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} *** Step 5.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))):2 2:W:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))):2 3:S:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) *** Step 5.b:3.a:2: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 3:S:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) *** Step 5.b:3.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) 2: sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) The strictly oriented rules are moved into the weak component. **** Step 5.b:3.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_6) = {1} Following symbols are considered usable: {add#,fib#,fib1#,sel#} TcT has computed the following interpretation: p(0) = [2] p(add) = [4] x1 + [2] x2 + [8] p(cons) = [4] p(fib) = [1] p(fib1) = [2] x2 + [0] p(s) = [1] x1 + [1] p(sel) = [8] x1 + [2] x2 + [0] p(add#) = [8] x1 + [0] p(fib#) = [8] x1 + [10] p(fib1#) = [2] x1 + [2] p(sel#) = [2] x1 + [0] p(c_1) = [2] p(c_2) = [1] x1 + [0] p(c_3) = [4] x1 + [0] p(c_4) = [1] x1 + [1] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: fib#(N) = [8] N + [10] > [8] N + [0] = c_3(sel#(N,fib1(s(0()),s(0())))) sel#(s(N),cons(X,XS)) = [2] N + [2] > [2] N + [0] = c_6(sel#(N,XS)) Following rules are (at-least) weakly oriented: **** Step 5.b:3.a:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 5.b:3.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):2 2:W:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0())))) 2: sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) **** Step 5.b:3.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 5.b:3.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))):1 2:W:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))):1 3:W:sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) -->_1 sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: sel#(s(N),cons(X,XS)) -> c_6(sel#(N,XS)) *** Step 5.b:3.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak DPs: fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/2,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) -->_1 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))):1 2:W:fib#(N) -> c_3(sel#(N,fib1(s(0()),s(0()))),fib1#(s(0()),s(0()))) -->_2 fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: fib#(N) -> c_3(fib1#(s(0()),s(0()))) *** Step 5.b:3.b:3: UsableRules MAYBE + Considered Problem: - Strict DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak DPs: fib#(N) -> c_3(fib1#(s(0()),s(0()))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib1(X,Y) -> cons(X,fib1(Y,add(X,Y))) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) fib#(N) -> c_3(fib1#(s(0()),s(0()))) fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) *** Step 5.b:3.b:4: Failure MAYBE + Considered Problem: - Strict DPs: fib1#(X,Y) -> c_4(fib1#(Y,add(X,Y))) - Weak DPs: fib#(N) -> c_3(fib1#(s(0()),s(0()))) - Weak TRS: add(0(),X) -> X add(s(X),Y) -> s(add(X,Y)) - Signature: {add/2,fib/1,fib1/2,sel/2,add#/2,fib#/1,fib1#/2,sel#/2} / {0/0,cons/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0 ,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {add#,fib#,fib1#,sel#} and constructors {0,cons,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE