MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            f(0(),0(),0(),0(),0()) -> 0()
            f(0(),0(),0(),0(),s(x5)) -> f(x5,x5,x5,x5,x5)
            f(0(),0(),0(),s(x4),x5) -> f(x4,x4,x4,x4,x5)
            f(0(),0(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5)
            f(0(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5)
            f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5)
        - Signature:
            {f/5} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f} and constructors {0,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          f#(0(),0(),0(),0(),0()) -> c_1()
          f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
          f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
          f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
          f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
          f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),0(),0()) -> c_1()
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Strict TRS:
            f(0(),0(),0(),0(),0()) -> 0()
            f(0(),0(),0(),0(),s(x5)) -> f(x5,x5,x5,x5,x5)
            f(0(),0(),0(),s(x4),x5) -> f(x4,x4,x4,x4,x5)
            f(0(),0(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5)
            f(0(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5)
            f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5)
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          f#(0(),0(),0(),0(),0()) -> c_1()
          f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
          f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
          f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
          f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
          f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),0(),0()) -> c_1()
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {2,3,4,5,6}.
        Here rules are labelled as follows:
          1: f#(0(),0(),0(),0(),0()) -> c_1()
          2: f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
          3: f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
          4: f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
          5: f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
          6: f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
* Step 4: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),0()) -> c_1()
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
             -->_1 f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5)):5
             -->_1 f#(0(),0(),0(),0(),0()) -> c_1():6
          
          2:S:f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
             -->_1 f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5)):5
             -->_1 f#(0(),0(),0(),0(),0()) -> c_1():6
             -->_1 f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5)):1
          
          3:S:f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
             -->_1 f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5)):5
             -->_1 f#(0(),0(),0(),0(),0()) -> c_1():6
             -->_1 f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5)):2
             -->_1 f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5)):1
          
          4:S:f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
             -->_1 f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5)):5
             -->_1 f#(0(),0(),0(),0(),0()) -> c_1():6
             -->_1 f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5)):3
             -->_1 f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5)):2
             -->_1 f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5)):1
          
          5:S:f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
             -->_1 f#(0(),0(),0(),0(),0()) -> c_1():6
             -->_1 f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5)):5
             -->_1 f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5)):4
             -->_1 f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5)):3
             -->_1 f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5)):2
             -->_1 f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5)):1
          
          6:W:f#(0(),0(),0(),0(),0()) -> c_1()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: f#(0(),0(),0(),0(),0()) -> c_1()
* Step 5: PredecessorEstimationCP MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
          
        The strictly oriented rules are moved into the weak component.
** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {f#}
        TcT has computed the following interpretation:
            p(0) = [0]                                    
            p(f) = [1] x1 + [1] x2 + [1] x4 + [1] x5 + [8]
            p(s) = [1] x1 + [4]                           
           p(f#) = [2] x5 + [0]                           
          p(c_1) = [1]                                    
          p(c_2) = [1] x1 + [0]                           
          p(c_3) = [1] x1 + [0]                           
          p(c_4) = [1] x1 + [0]                           
          p(c_5) = [1] x1 + [0]                           
          p(c_6) = [1] x1 + [0]                           
        
        Following rules are strictly oriented:
        f#(0(),0(),0(),0(),s(x5)) = [2] x5 + [8]           
                                  > [2] x5 + [0]           
                                  = c_2(f#(x5,x5,x5,x5,x5))
        
        
        Following rules are (at-least) weakly oriented:
        f#(0(),0(),0(),s(x4),x5) =  [2] x5 + [0]           
                                 >= [2] x5 + [0]           
                                 =  c_3(f#(x4,x4,x4,x4,x5))
        
         f#(0(),0(),s(x3),x4,x5) =  [2] x5 + [0]           
                                 >= [2] x5 + [0]           
                                 =  c_4(f#(x3,x3,x3,x4,x5))
        
          f#(0(),s(x2),x3,x4,x5) =  [2] x5 + [0]           
                                 >= [2] x5 + [0]           
                                 =  c_5(f#(x2,x2,x3,x4,x5))
        
           f#(s(x1),x2,x3,x4,x5) =  [2] x5 + [0]           
                                 >= [2] x5 + [0]           
                                 =  c_6(f#(x1,x2,x3,x4,x5))
        
** Step 5.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

** Step 5.b:1: PredecessorEstimationCP MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
          
        The strictly oriented rules are moved into the weak component.
*** Step 5.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {f#}
        TcT has computed the following interpretation:
            p(0) = 0                                                                        
            p(f) = 4 + 2*x1*x3 + x2 + x2*x4 + 2*x2*x5 + 2*x2^2 + x3*x5 + 2*x3^2 + x4*x5 + x5
            p(s) = 2 + x1                                                                   
           p(f#) = 6*x4 + 3*x5^2                                                            
          p(c_1) = 1                                                                        
          p(c_2) = x1                                                                       
          p(c_3) = 4 + x1                                                                   
          p(c_4) = x1                                                                       
          p(c_5) = x1                                                                       
          p(c_6) = x1                                                                       
        
        Following rules are strictly oriented:
        f#(0(),0(),0(),s(x4),x5) = 12 + 6*x4 + 3*x5^2     
                                 > 4 + 6*x4 + 3*x5^2      
                                 = c_3(f#(x4,x4,x4,x4,x5))
        
        
        Following rules are (at-least) weakly oriented:
        f#(0(),0(),0(),0(),s(x5)) =  12 + 12*x5 + 3*x5^2    
                                  >= 6*x5 + 3*x5^2          
                                  =  c_2(f#(x5,x5,x5,x5,x5))
        
          f#(0(),0(),s(x3),x4,x5) =  6*x4 + 3*x5^2          
                                  >= 6*x4 + 3*x5^2          
                                  =  c_4(f#(x3,x3,x3,x4,x5))
        
           f#(0(),s(x2),x3,x4,x5) =  6*x4 + 3*x5^2          
                                  >= 6*x4 + 3*x5^2          
                                  =  c_5(f#(x2,x2,x3,x4,x5))
        
            f#(s(x1),x2,x3,x4,x5) =  6*x4 + 3*x5^2          
                                  >= 6*x4 + 3*x5^2          
                                  =  c_6(f#(x1,x2,x3,x4,x5))
        
*** Step 5.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 5.b:1.b:1: NaturalMI MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 4, miDegree = 4, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {f#}
        TcT has computed the following interpretation:
            p(0) = [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
            p(f) = [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
            p(s) = [1 1 1 1]      [0]                                                            
                   [0 0 0 0] x1 + [0]                                                            
                   [0 0 1 1]      [0]                                                            
                   [0 0 0 1]      [1]                                                            
           p(f#) = [0 0 0 0]      [0 0 0 0]      [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [0]
                   [0 0 0 0] x1 + [0 1 0 1] x2 + [0 0 1 1] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]
                   [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 1 0 0]      [0]
                   [0 1 0 0]      [1 1 0 0]      [0 0 1 1]      [1 0 0 0]      [0 0 0 0]      [0]
          p(c_1) = [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
          p(c_2) = [1 0 1 0]      [0]                                                            
                   [0 0 0 0] x1 + [0]                                                            
                   [0 0 0 0]      [0]                                                            
                   [0 0 0 0]      [0]                                                            
          p(c_3) = [1 0 0 0]      [0]                                                            
                   [0 0 0 0] x1 + [0]                                                            
                   [0 0 0 0]      [0]                                                            
                   [0 0 0 0]      [0]                                                            
          p(c_4) = [1 0 0 0]      [0]                                                            
                   [0 0 0 0] x1 + [0]                                                            
                   [0 0 0 0]      [0]                                                            
                   [0 0 0 0]      [0]                                                            
          p(c_5) = [1 0 0 0]      [0]                                                            
                   [0 0 0 0] x1 + [1]                                                            
                   [0 0 1 0]      [0]                                                            
                   [0 1 0 0]      [0]                                                            
          p(c_6) = [1 0 0 0]      [0]                                                            
                   [0 0 0 0] x1 + [0]                                                            
                   [0 0 1 0]      [0]                                                            
                   [0 0 0 0]      [0]                                                            
        
        Following rules are strictly oriented:
        f#(0(),0(),s(x3),x4,x5) = [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [1]
                                  [0 0 1 2] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [1]
                                  [0 0 0 0]      [0 0 0 0]      [0 1 0 0]      [0]
                                  [0 0 1 2]      [1 0 0 0]      [0 0 0 0]      [1]
                                > [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [0]
                                  [0 0 0 0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]
                                  [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0]
                                  [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0]
                                = c_4(f#(x3,x3,x3,x4,x5))                         
        
        
        Following rules are (at-least) weakly oriented:
        f#(0(),0(),0(),0(),s(x5)) =  [1 1 2 2]      [0]                                             
                                     [0 0 0 0] x5 + [0]                                             
                                     [0 0 0 0]      [0]                                             
                                     [0 0 0 0]      [0]                                             
                                  >= [1 1 2 2]      [0]                                             
                                     [0 0 0 0] x5 + [0]                                             
                                     [0 0 0 0]      [0]                                             
                                     [0 0 0 0]      [0]                                             
                                  =  c_2(f#(x5,x5,x5,x5,x5))                                        
        
         f#(0(),0(),0(),s(x4),x5) =  [0 0 1 2]      [1 0 1 0]      [1]                              
                                     [0 0 0 0] x4 + [0 0 0 0] x5 + [0]                              
                                     [0 0 0 0]      [0 1 0 0]      [0]                              
                                     [1 1 1 1]      [0 0 0 0]      [0]                              
                                  >= [0 0 1 2]      [1 0 1 0]      [0]                              
                                     [0 0 0 0] x4 + [0 0 0 0] x5 + [0]                              
                                     [0 0 0 0]      [0 0 0 0]      [0]                              
                                     [0 0 0 0]      [0 0 0 0]      [0]                              
                                  =  c_3(f#(x4,x4,x4,x4,x5))                                        
        
           f#(0(),s(x2),x3,x4,x5) =  [0 0 0 0]      [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [0]
                                     [0 0 0 1] x2 + [0 0 1 1] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [1]
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 1 0 0]      [0]
                                     [1 1 1 1]      [0 0 1 1]      [1 0 0 0]      [0 0 0 0]      [0]
                                  >= [0 0 0 0]      [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [0]
                                     [0 0 0 0] x2 + [0 0 0 0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [1]
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 1 0 0]      [0]
                                     [0 1 0 1]      [0 0 1 1]      [0 0 0 0]      [0 0 0 0]      [0]
                                  =  c_5(f#(x2,x2,x3,x4,x5))                                        
        
            f#(s(x1),x2,x3,x4,x5) =  [0 0 0 0]      [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [0]
                                     [0 1 0 1] x2 + [0 0 1 1] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 1 0 0]      [0]
                                     [1 1 0 0]      [0 0 1 1]      [1 0 0 0]      [0 0 0 0]      [0]
                                  >= [0 0 0 1]      [0 0 1 1]      [1 0 1 0]      [0]               
                                     [0 0 0 0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]               
                                     [0 0 0 0]      [0 0 0 0]      [0 1 0 0]      [0]               
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0]               
                                  =  c_6(f#(x1,x2,x3,x4,x5))                                        
        
*** Step 5.b:1.b:2: NaturalMI MAYBE
    + Considered Problem:
        - Strict DPs:
            f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
            f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
        - Weak DPs:
            f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
            f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
            f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
        - Signature:
            {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 4, miDegree = 4, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {f#}
        TcT has computed the following interpretation:
            p(0) = [0]                                                                           
                   [0]                                                                           
                   [1]                                                                           
                   [0]                                                                           
            p(f) = [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
            p(s) = [1 1 1 1]      [0]                                                            
                   [0 1 1 1] x1 + [0]                                                            
                   [0 0 1 1]      [1]                                                            
                   [0 0 0 1]      [1]                                                            
           p(f#) = [0 0 0 0]      [0 0 0 1]      [0 0 1 0]      [0 1 0 0]      [1 0 1 1]      [0]
                   [0 1 0 0] x1 + [0 1 0 0] x2 + [0 1 0 0] x3 + [0 0 1 1] x4 + [0 0 0 0] x5 + [0]
                   [1 1 0 0]      [0 0 1 0]      [0 0 0 1]      [0 0 0 0]      [0 0 1 0]      [1]
                   [0 0 0 0]      [0 1 1 1]      [0 1 0 0]      [0 0 0 0]      [0 0 0 0]      [0]
          p(c_1) = [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
                   [0]                                                                           
          p(c_2) = [1 0 0 0]      [1]                                                            
                   [0 0 0 0] x1 + [1]                                                            
                   [0 0 0 0]      [1]                                                            
                   [0 0 0 0]      [0]                                                            
          p(c_3) = [1 0 0 0]      [0]                                                            
                   [0 0 0 0] x1 + [1]                                                            
                   [0 0 0 0]      [1]                                                            
                   [0 0 0 0]      [1]                                                            
          p(c_4) = [1 0 0 0]      [1]                                                            
                   [0 0 0 0] x1 + [0]                                                            
                   [0 0 0 0]      [1]                                                            
                   [0 0 0 0]      [1]                                                            
          p(c_5) = [1 0 0 0]      [0]                                                            
                   [0 0 0 1] x1 + [0]                                                            
                   [0 0 0 0]      [0]                                                            
                   [0 0 0 0]      [1]                                                            
          p(c_6) = [1 0 0 0]      [0]                                                            
                   [0 1 0 0] x1 + [0]                                                            
                   [0 0 0 0]      [1]                                                            
                   [0 0 0 0]      [0]                                                            
        
        Following rules are strictly oriented:
        f#(0(),s(x2),x3,x4,x5) = [0 0 0 1]      [0 0 1 0]      [0 1 0 0]      [1 0 1 1]      [1]
                                 [0 1 1 1] x2 + [0 1 0 0] x3 + [0 0 1 1] x4 + [0 0 0 0] x5 + [0]
                                 [0 0 1 1]      [0 0 0 1]      [0 0 0 0]      [0 0 1 0]      [2]
                                 [0 1 2 3]      [0 1 0 0]      [0 0 0 0]      [0 0 0 0]      [2]
                               > [0 0 0 1]      [0 0 1 0]      [0 1 0 0]      [1 0 1 1]      [0]
                                 [0 1 1 1] x2 + [0 1 0 0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]
                                 [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0]
                                 [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [1]
                               = c_5(f#(x2,x2,x3,x4,x5))                                        
        
        
        Following rules are (at-least) weakly oriented:
        f#(0(),0(),0(),0(),s(x5)) =  [1 1 2 3]      [3]                                                            
                                     [0 0 0 0] x5 + [1]                                                            
                                     [0 0 1 1]      [3]                                                            
                                     [0 0 0 0]      [1]                                                            
                                  >= [1 1 2 2]      [1]                                                            
                                     [0 0 0 0] x5 + [1]                                                            
                                     [0 0 0 0]      [1]                                                            
                                     [0 0 0 0]      [0]                                                            
                                  =  c_2(f#(x5,x5,x5,x5,x5))                                                       
        
         f#(0(),0(),0(),s(x4),x5) =  [0 1 1 1]      [1 0 1 1]      [1]                                             
                                     [0 0 1 2] x4 + [0 0 0 0] x5 + [2]                                             
                                     [0 0 0 0]      [0 0 1 0]      [2]                                             
                                     [0 0 0 0]      [0 0 0 0]      [1]                                             
                                  >= [0 1 1 1]      [1 0 1 1]      [0]                                             
                                     [0 0 0 0] x4 + [0 0 0 0] x5 + [1]                                             
                                     [0 0 0 0]      [0 0 0 0]      [1]                                             
                                     [0 0 0 0]      [0 0 0 0]      [1]                                             
                                  =  c_3(f#(x4,x4,x4,x4,x5))                                                       
        
          f#(0(),0(),s(x3),x4,x5) =  [0 0 1 1]      [0 1 0 0]      [1 0 1 1]      [1]                              
                                     [0 1 1 1] x3 + [0 0 1 1] x4 + [0 0 0 0] x5 + [0]                              
                                     [0 0 0 1]      [0 0 0 0]      [0 0 1 0]      [3]                              
                                     [0 1 1 1]      [0 0 0 0]      [0 0 0 0]      [1]                              
                                  >= [0 0 1 1]      [0 1 0 0]      [1 0 1 1]      [1]                              
                                     [0 0 0 0] x3 + [0 0 0 0] x4 + [0 0 0 0] x5 + [0]                              
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [1]                              
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [1]                              
                                  =  c_4(f#(x3,x3,x3,x4,x5))                                                       
        
            f#(s(x1),x2,x3,x4,x5) =  [0 0 0 0]      [0 0 0 1]      [0 0 1 0]      [0 1 0 0]      [1 0 1 1]      [0]
                                     [0 1 1 1] x1 + [0 1 0 0] x2 + [0 1 0 0] x3 + [0 0 1 1] x4 + [0 0 0 0] x5 + [0]
                                     [1 2 2 2]      [0 0 1 0]      [0 0 0 1]      [0 0 0 0]      [0 0 1 0]      [1]
                                     [0 0 0 0]      [0 1 1 1]      [0 1 0 0]      [0 0 0 0]      [0 0 0 0]      [0]
                                  >= [0 0 0 0]      [0 0 0 1]      [0 0 1 0]      [0 1 0 0]      [1 0 1 1]      [0]
                                     [0 1 0 0] x1 + [0 1 0 0] x2 + [0 1 0 0] x3 + [0 0 1 1] x4 + [0 0 0 0] x5 + [0]
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [1]
                                     [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0 0 0 0]      [0]
                                  =  c_6(f#(x1,x2,x3,x4,x5))                                                       
        
*** Step 5.b:1.b:3: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          f#(s(x1),x2,x3,x4,x5) -> c_6(f#(x1,x2,x3,x4,x5))
      - Weak DPs:
          f#(0(),0(),0(),0(),s(x5)) -> c_2(f#(x5,x5,x5,x5,x5))
          f#(0(),0(),0(),s(x4),x5) -> c_3(f#(x4,x4,x4,x4,x5))
          f#(0(),0(),s(x3),x4,x5) -> c_4(f#(x3,x3,x3,x4,x5))
          f#(0(),s(x2),x3,x4,x5) -> c_5(f#(x2,x2,x3,x4,x5))
      - Signature:
          {f/5,f#/5} / {0/0,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {f#} and constructors {0,s}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE