MAYBE * Step 1: WeightGap MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) nats() -> n__nats() odds() -> incr(pairs()) odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) tail(cons(X,XS)) -> activate(XS) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [14] p(activate) = [1] x1 + [3] p(cons) = [1] x1 + [1] x2 + [0] p(head) = [1] x1 + [0] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [0] p(n__nats) = [0] p(n__odds) = [0] p(nats) = [0] p(odds) = [0] p(pairs) = [0] p(s) = [1] x1 + [0] p(tail) = [1] x1 + [0] Following rules are strictly oriented: activate(X) = [1] X + [3] > [1] X + [0] = X activate(n__nats()) = [3] > [0] = nats() activate(n__odds()) = [3] > [0] = odds() Following rules are (at-least) weakly oriented: activate(n__incr(X)) = [1] X + [3] >= [1] X + [3] = incr(activate(X)) head(cons(X,XS)) = [1] X + [1] XS + [0] >= [1] X + [0] = X incr(X) = [1] X + [0] >= [1] X + [0] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [0] >= [1] X + [1] XS + [3] = cons(s(X),n__incr(activate(XS))) nats() = [0] >= [14] = cons(0(),n__incr(n__nats())) nats() = [0] >= [0] = n__nats() odds() = [0] >= [0] = incr(pairs()) odds() = [0] >= [0] = n__odds() pairs() = [0] >= [14] = cons(0(),n__incr(n__odds())) tail(cons(X,XS)) = [1] X + [1] XS + [0] >= [1] XS + [3] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 2: WeightGap MAYBE + Considered Problem: - Strict TRS: activate(n__incr(X)) -> incr(activate(X)) head(cons(X,XS)) -> X incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) nats() -> n__nats() odds() -> incr(pairs()) odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) tail(cons(X,XS)) -> activate(XS) - Weak TRS: activate(X) -> X activate(n__nats()) -> nats() activate(n__odds()) -> odds() - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [4] p(cons) = [1] x1 + [1] x2 + [4] p(head) = [2] x1 + [0] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [0] p(n__nats) = [1] p(n__odds) = [0] p(nats) = [1] p(odds) = [0] p(pairs) = [0] p(s) = [1] x1 + [0] p(tail) = [1] x1 + [0] Following rules are strictly oriented: head(cons(X,XS)) = [2] X + [2] XS + [8] > [1] X + [0] = X Following rules are (at-least) weakly oriented: activate(X) = [1] X + [4] >= [1] X + [0] = X activate(n__incr(X)) = [1] X + [4] >= [1] X + [4] = incr(activate(X)) activate(n__nats()) = [5] >= [1] = nats() activate(n__odds()) = [4] >= [0] = odds() incr(X) = [1] X + [0] >= [1] X + [0] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [4] >= [1] X + [1] XS + [8] = cons(s(X),n__incr(activate(XS))) nats() = [1] >= [5] = cons(0(),n__incr(n__nats())) nats() = [1] >= [1] = n__nats() odds() = [0] >= [0] = incr(pairs()) odds() = [0] >= [0] = n__odds() pairs() = [0] >= [4] = cons(0(),n__incr(n__odds())) tail(cons(X,XS)) = [1] X + [1] XS + [4] >= [1] XS + [4] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: WeightGap MAYBE + Considered Problem: - Strict TRS: activate(n__incr(X)) -> incr(activate(X)) incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) nats() -> n__nats() odds() -> incr(pairs()) odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) tail(cons(X,XS)) -> activate(XS) - Weak TRS: activate(X) -> X activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [12] p(cons) = [1] x1 + [1] x2 + [0] p(head) = [8] x1 + [0] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [5] p(n__nats) = [8] p(n__odds) = [8] p(nats) = [0] p(odds) = [8] p(pairs) = [5] p(s) = [1] x1 + [2] p(tail) = [1] x1 + [8] Following rules are strictly oriented: activate(n__incr(X)) = [1] X + [17] > [1] X + [12] = incr(activate(X)) odds() = [8] > [5] = incr(pairs()) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [12] >= [1] X + [0] = X activate(n__nats()) = [20] >= [0] = nats() activate(n__odds()) = [20] >= [8] = odds() head(cons(X,XS)) = [8] X + [8] XS + [0] >= [1] X + [0] = X incr(X) = [1] X + [0] >= [1] X + [5] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [0] >= [1] X + [1] XS + [19] = cons(s(X),n__incr(activate(XS))) nats() = [0] >= [13] = cons(0(),n__incr(n__nats())) nats() = [0] >= [8] = n__nats() odds() = [8] >= [8] = n__odds() pairs() = [5] >= [13] = cons(0(),n__incr(n__odds())) tail(cons(X,XS)) = [1] X + [1] XS + [8] >= [1] XS + [12] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: WeightGap MAYBE + Considered Problem: - Strict TRS: incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) nats() -> n__nats() odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) tail(cons(X,XS)) -> activate(XS) - Weak TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X odds() -> incr(pairs()) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(activate) = [1] x1 + [8] p(cons) = [1] x1 + [1] x2 + [4] p(head) = [4] x1 + [0] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [9] p(n__nats) = [15] p(n__odds) = [12] p(nats) = [1] p(odds) = [8] p(pairs) = [8] p(s) = [1] x1 + [8] p(tail) = [1] x1 + [8] Following rules are strictly oriented: tail(cons(X,XS)) = [1] X + [1] XS + [12] > [1] XS + [8] = activate(XS) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [8] >= [1] X + [0] = X activate(n__incr(X)) = [1] X + [17] >= [1] X + [8] = incr(activate(X)) activate(n__nats()) = [23] >= [1] = nats() activate(n__odds()) = [20] >= [8] = odds() head(cons(X,XS)) = [4] X + [4] XS + [16] >= [1] X + [0] = X incr(X) = [1] X + [0] >= [1] X + [9] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [4] >= [1] X + [1] XS + [29] = cons(s(X),n__incr(activate(XS))) nats() = [1] >= [30] = cons(0(),n__incr(n__nats())) nats() = [1] >= [15] = n__nats() odds() = [8] >= [8] = incr(pairs()) odds() = [8] >= [12] = n__odds() pairs() = [8] >= [27] = cons(0(),n__incr(n__odds())) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: WeightGap MAYBE + Considered Problem: - Strict TRS: incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) nats() -> n__nats() odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) - Weak TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X odds() -> incr(pairs()) tail(cons(X,XS)) -> activate(XS) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [7] p(activate) = [1] x1 + [9] p(cons) = [1] x1 + [1] x2 + [1] p(head) = [2] x1 + [4] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [4] p(n__nats) = [14] p(n__odds) = [11] p(nats) = [15] p(odds) = [8] p(pairs) = [0] p(s) = [0] p(tail) = [1] x1 + [9] Following rules are strictly oriented: nats() = [15] > [14] = n__nats() Following rules are (at-least) weakly oriented: activate(X) = [1] X + [9] >= [1] X + [0] = X activate(n__incr(X)) = [1] X + [13] >= [1] X + [9] = incr(activate(X)) activate(n__nats()) = [23] >= [15] = nats() activate(n__odds()) = [20] >= [8] = odds() head(cons(X,XS)) = [2] X + [2] XS + [6] >= [1] X + [0] = X incr(X) = [1] X + [0] >= [1] X + [4] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [1] >= [1] XS + [14] = cons(s(X),n__incr(activate(XS))) nats() = [15] >= [26] = cons(0(),n__incr(n__nats())) odds() = [8] >= [0] = incr(pairs()) odds() = [8] >= [11] = n__odds() pairs() = [0] >= [23] = cons(0(),n__incr(n__odds())) tail(cons(X,XS)) = [1] X + [1] XS + [10] >= [1] XS + [9] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap MAYBE + Considered Problem: - Strict TRS: incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) - Weak TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X nats() -> n__nats() odds() -> incr(pairs()) tail(cons(X,XS)) -> activate(XS) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [4] p(activate) = [1] x1 + [4] p(cons) = [1] x1 + [1] x2 + [1] p(head) = [1] x1 + [10] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [14] p(n__nats) = [2] p(n__odds) = [8] p(nats) = [4] p(odds) = [9] p(pairs) = [0] p(s) = [0] p(tail) = [9] x1 + [8] Following rules are strictly oriented: odds() = [9] > [8] = n__odds() Following rules are (at-least) weakly oriented: activate(X) = [1] X + [4] >= [1] X + [0] = X activate(n__incr(X)) = [1] X + [18] >= [1] X + [4] = incr(activate(X)) activate(n__nats()) = [6] >= [4] = nats() activate(n__odds()) = [12] >= [9] = odds() head(cons(X,XS)) = [1] X + [1] XS + [11] >= [1] X + [0] = X incr(X) = [1] X + [0] >= [1] X + [14] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [1] >= [1] XS + [19] = cons(s(X),n__incr(activate(XS))) nats() = [4] >= [21] = cons(0(),n__incr(n__nats())) nats() = [4] >= [2] = n__nats() odds() = [9] >= [0] = incr(pairs()) pairs() = [0] >= [27] = cons(0(),n__incr(n__odds())) tail(cons(X,XS)) = [9] X + [9] XS + [17] >= [1] XS + [4] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: WeightGap MAYBE + Considered Problem: - Strict TRS: incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) pairs() -> cons(0(),n__incr(n__odds())) - Weak TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X nats() -> n__nats() odds() -> incr(pairs()) odds() -> n__odds() tail(cons(X,XS)) -> activate(XS) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [2] p(cons) = [1] x1 + [1] x2 + [0] p(head) = [2] x1 + [2] p(incr) = [1] x1 + [0] p(n__incr) = [1] x1 + [1] p(n__nats) = [0] p(n__odds) = [0] p(nats) = [1] p(odds) = [2] p(pairs) = [2] p(s) = [0] p(tail) = [3] x1 + [7] Following rules are strictly oriented: pairs() = [2] > [1] = cons(0(),n__incr(n__odds())) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [2] >= [1] X + [0] = X activate(n__incr(X)) = [1] X + [3] >= [1] X + [2] = incr(activate(X)) activate(n__nats()) = [2] >= [1] = nats() activate(n__odds()) = [2] >= [2] = odds() head(cons(X,XS)) = [2] X + [2] XS + [2] >= [1] X + [0] = X incr(X) = [1] X + [0] >= [1] X + [1] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [0] >= [1] XS + [3] = cons(s(X),n__incr(activate(XS))) nats() = [1] >= [1] = cons(0(),n__incr(n__nats())) nats() = [1] >= [0] = n__nats() odds() = [2] >= [2] = incr(pairs()) odds() = [2] >= [0] = n__odds() tail(cons(X,XS)) = [3] X + [3] XS + [7] >= [1] XS + [2] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: WeightGap MAYBE + Considered Problem: - Strict TRS: incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) nats() -> cons(0(),n__incr(n__nats())) - Weak TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X nats() -> n__nats() odds() -> incr(pairs()) odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) tail(cons(X,XS)) -> activate(XS) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(cons) = {2}, uargs(incr) = {1}, uargs(n__incr) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [10] p(cons) = [1] x1 + [1] x2 + [2] p(head) = [2] x1 + [9] p(incr) = [1] x1 + [1] p(n__incr) = [1] x1 + [1] p(n__nats) = [6] p(n__odds) = [8] p(nats) = [10] p(odds) = [14] p(pairs) = [11] p(s) = [1] x1 + [15] p(tail) = [4] x1 + [3] Following rules are strictly oriented: nats() = [10] > [9] = cons(0(),n__incr(n__nats())) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [10] >= [1] X + [0] = X activate(n__incr(X)) = [1] X + [11] >= [1] X + [11] = incr(activate(X)) activate(n__nats()) = [16] >= [10] = nats() activate(n__odds()) = [18] >= [14] = odds() head(cons(X,XS)) = [2] X + [2] XS + [13] >= [1] X + [0] = X incr(X) = [1] X + [1] >= [1] X + [1] = n__incr(X) incr(cons(X,XS)) = [1] X + [1] XS + [3] >= [1] X + [1] XS + [28] = cons(s(X),n__incr(activate(XS))) nats() = [10] >= [6] = n__nats() odds() = [14] >= [12] = incr(pairs()) odds() = [14] >= [8] = n__odds() pairs() = [11] >= [11] = cons(0(),n__incr(n__odds())) tail(cons(X,XS)) = [4] X + [4] XS + [11] >= [1] XS + [10] = activate(XS) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 9: Failure MAYBE + Considered Problem: - Strict TRS: incr(X) -> n__incr(X) incr(cons(X,XS)) -> cons(s(X),n__incr(activate(XS))) - Weak TRS: activate(X) -> X activate(n__incr(X)) -> incr(activate(X)) activate(n__nats()) -> nats() activate(n__odds()) -> odds() head(cons(X,XS)) -> X nats() -> cons(0(),n__incr(n__nats())) nats() -> n__nats() odds() -> incr(pairs()) odds() -> n__odds() pairs() -> cons(0(),n__incr(n__odds())) tail(cons(X,XS)) -> activate(XS) - Signature: {activate/1,head/1,incr/1,nats/0,odds/0,pairs/0,tail/1} / {0/0,cons/2,n__incr/1,n__nats/0,n__odds/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,head,incr,nats,odds,pairs ,tail} and constructors {0,cons,n__incr,n__nats,n__odds,s} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE