WORST_CASE(?,O(n^1)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,s,sel} and constructors {0,cons,n__from ,n__s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) All above mentioned rules can be savely removed. * Step 2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X - Signature: {activate/1,from/1,s/1,sel/2} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,s,sel} and constructors {0,cons,n__from ,n__s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() * Step 4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(from) = {1}, uargs(s) = {1}, uargs(from#) = {1}, uargs(s#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [4] x1 + [11] p(cons) = [4] p(from) = [1] x1 + [5] p(n__from) = [1] x1 + [4] p(n__s) = [1] x1 + [2] p(s) = [1] x1 + [5] p(sel) = [2] x2 + [0] p(activate#) = [4] x1 + [0] p(from#) = [1] x1 + [0] p(s#) = [1] x1 + [0] p(sel#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [8] p(c_3) = [1] x1 + [12] p(c_4) = [0] p(c_5) = [2] p(c_6) = [0] p(c_7) = [1] Following rules are strictly oriented: activate(X) = [4] X + [11] > [1] X + [0] = X activate(n__from(X)) = [4] X + [27] > [4] X + [16] = from(activate(X)) activate(n__s(X)) = [4] X + [19] > [4] X + [16] = s(activate(X)) from(X) = [1] X + [5] > [4] = cons(X,n__from(n__s(X))) from(X) = [1] X + [5] > [1] X + [4] = n__from(X) s(X) = [1] X + [5] > [1] X + [2] = n__s(X) Following rules are (at-least) weakly oriented: activate#(X) = [4] X + [0] >= [0] = c_1() activate#(n__from(X)) = [4] X + [16] >= [4] X + [19] = c_2(from#(activate(X))) activate#(n__s(X)) = [4] X + [8] >= [4] X + [23] = c_3(s#(activate(X))) from#(X) = [1] X + [0] >= [0] = c_4() from#(X) = [1] X + [0] >= [2] = c_5() s#(X) = [1] X + [0] >= [0] = c_6() sel#(0(),cons(X,Y)) = [0] >= [1] = c_7() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5,6,7} by application of Pre({1,4,5,6,7}) = {2,3}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__from(X)) -> c_2(from#(activate(X))) 3: activate#(n__s(X)) -> c_3(s#(activate(X))) 4: from#(X) -> c_4() 5: from#(X) -> c_5() 6: s#(X) -> c_6() 7: sel#(0(),cons(X,Y)) -> c_7() * Step 6: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) - Weak DPs: activate#(X) -> c_1() from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {}. Here rules are labelled as follows: 1: activate#(n__from(X)) -> c_2(from#(activate(X))) 2: activate#(n__s(X)) -> c_3(s#(activate(X))) 3: activate#(X) -> c_1() 4: from#(X) -> c_4() 5: from#(X) -> c_5() 6: s#(X) -> c_6() 7: sel#(0(),cons(X,Y)) -> c_7() * Step 7: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:activate#(X) -> c_1() 2:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_5():5 -->_1 from#(X) -> c_4():4 3:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_6():6 4:W:from#(X) -> c_4() 5:W:from#(X) -> c_5() 6:W:s#(X) -> c_6() 7:W:sel#(0(),cons(X,Y)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: sel#(0(),cons(X,Y)) -> c_7() 3: activate#(n__s(X)) -> c_3(s#(activate(X))) 6: s#(X) -> c_6() 2: activate#(n__from(X)) -> c_2(from#(activate(X))) 4: from#(X) -> c_4() 5: from#(X) -> c_5() 1: activate#(X) -> c_1() * Step 8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))