WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,sel} and constructors {0,cons,n__from,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(sel#) = {2}, uargs(c_2) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [7] p(cons) = [1] x2 + [0] p(from) = [1] x1 + [7] p(n__from) = [1] x1 + [1] p(s) = [1] x1 + [3] p(sel) = [0] p(activate#) = [3] x1 + [0] p(from#) = [3] x1 + [0] p(sel#) = [8] x1 + [1] x2 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: activate#(n__from(X)) = [3] X + [3] > [3] X + [0] = c_2(from#(X)) sel#(s(X),cons(Y,Z)) = [8] X + [1] Z + [24] > [8] X + [1] Z + [7] = c_6(sel#(X,activate(Z))) activate(X) = [1] X + [7] > [1] X + [0] = X activate(n__from(X)) = [1] X + [8] > [1] X + [7] = from(X) from(X) = [1] X + [7] > [1] X + [4] = cons(X,n__from(s(X))) from(X) = [1] X + [7] > [1] X + [1] = n__from(X) Following rules are (at-least) weakly oriented: activate#(X) = [3] X + [0] >= [0] = c_1() from#(X) = [3] X + [0] >= [0] = c_3() from#(X) = [3] X + [0] >= [0] = c_4() sel#(0(),cons(X,Y)) = [1] Y + [0] >= [0] = c_5() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() - Weak DPs: activate#(n__from(X)) -> c_2(from#(X)) sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: from#(X) -> c_3() 3: from#(X) -> c_4() 4: sel#(0(),cons(X,Y)) -> c_5() 5: activate#(n__from(X)) -> c_2(from#(X)) 6: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() - Weak DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_3() 2:S:from#(X) -> c_4() 3:S:sel#(0(),cons(X,Y)) -> c_5() 4:W:activate#(X) -> c_1() 5:W:activate#(n__from(X)) -> c_2(from#(X)) -->_1 from#(X) -> c_4():2 -->_1 from#(X) -> c_3():1 6:W:sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) -->_1 sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))):6 -->_1 sel#(0(),cons(X,Y)) -> c_5():3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: activate#(X) -> c_1() * Step 6: RemoveHeads WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() - Weak DPs: activate#(n__from(X)) -> c_2(from#(X)) sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:from#(X) -> c_3() 2:S:from#(X) -> c_4() 3:S:sel#(0(),cons(X,Y)) -> c_5() 5:W:activate#(n__from(X)) -> c_2(from#(X)) -->_1 from#(X) -> c_4():2 -->_1 from#(X) -> c_3():1 6:W:sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) -->_1 sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))):6 -->_1 sel#(0(),cons(X,Y)) -> c_5():3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(5,activate#(n__from(X)) -> c_2(from#(X)))] * Step 7: RemoveHeads WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_3() from#(X) -> c_4() sel#(0(),cons(X,Y)) -> c_5() - Weak DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:from#(X) -> c_3() 2:S:from#(X) -> c_4() 3:S:sel#(0(),cons(X,Y)) -> c_5() 6:W:sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) -->_1 sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))):6 -->_1 sel#(0(),cons(X,Y)) -> c_5():3 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(1,from#(X) -> c_3()),(2,from#(X) -> c_4())] * Step 8: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: sel#(0(),cons(X,Y)) -> c_5() - Weak DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 3: sel#(0(),cons(X,Y)) -> c_5() The strictly oriented rules are moved into the weak component. ** Step 8.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: sel#(0(),cons(X,Y)) -> c_5() - Weak DPs: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {activate#,from#,sel#} TcT has computed the following interpretation: p(0) = [1] p(activate) = [0] p(cons) = [10] p(from) = [4] x1 + [1] p(n__from) = [14] p(s) = [2] p(sel) = [4] x1 + [2] x2 + [1] p(activate#) = [2] x1 + [0] p(from#) = [2] x1 + [0] p(sel#) = [1] p(c_1) = [8] p(c_2) = [1] p(c_3) = [1] p(c_4) = [2] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: sel#(0(),cons(X,Y)) = [1] > [0] = c_5() Following rules are (at-least) weakly oriented: sel#(s(X),cons(Y,Z)) = [1] >= [1] = c_6(sel#(X,activate(Z))) ** Step 8.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 8.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: sel#(0(),cons(X,Y)) -> c_5() sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:sel#(0(),cons(X,Y)) -> c_5() 2:W:sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) -->_1 sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))):2 -->_1 sel#(0(),cons(X,Y)) -> c_5():1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: sel#(s(X),cons(Y,Z)) -> c_6(sel#(X,activate(Z))) 1: sel#(0(),cons(X,Y)) -> c_5() ** Step 8.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,from/1,sel/2,activate#/1,from#/1,sel#/2} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/0 ,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,sel#} and constructors {0,cons,n__from,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))