WORST_CASE(?,O(n^1)) * Step 1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,after,from,s} and constructors {0,cons,n__from ,n__s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. after(s(N),cons(X,XS)) -> after(N,activate(XS)) All above mentioned rules can be savely removed. * Step 2: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,after,from,s} and constructors {0,cons,n__from ,n__s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) after#(0(),XS) -> c_4() from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) after#(0(),XS) -> c_4() from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) after(0(),XS) -> XS from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) after#(0(),XS) -> c_4() from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() * Step 4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) after#(0(),XS) -> c_4() from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(from) = {1}, uargs(s) = {1}, uargs(from#) = {1}, uargs(s#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [2] x1 + [5] p(after) = [2] x2 + [2] p(cons) = [1] x1 + [4] p(from) = [1] x1 + [7] p(n__from) = [1] x1 + [4] p(n__s) = [1] x1 + [3] p(s) = [1] x1 + [5] p(activate#) = [6] x1 + [0] p(after#) = [2] x2 + [0] p(from#) = [1] x1 + [0] p(s#) = [1] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] Following rules are strictly oriented: activate#(n__from(X)) = [6] X + [24] > [2] X + [5] = c_2(from#(activate(X))) activate#(n__s(X)) = [6] X + [18] > [2] X + [5] = c_3(s#(activate(X))) activate(X) = [2] X + [5] > [1] X + [0] = X activate(n__from(X)) = [2] X + [13] > [2] X + [12] = from(activate(X)) activate(n__s(X)) = [2] X + [11] > [2] X + [10] = s(activate(X)) from(X) = [1] X + [7] > [1] X + [4] = cons(X,n__from(n__s(X))) from(X) = [1] X + [7] > [1] X + [4] = n__from(X) s(X) = [1] X + [5] > [1] X + [3] = n__s(X) Following rules are (at-least) weakly oriented: activate#(X) = [6] X + [0] >= [0] = c_1() after#(0(),XS) = [2] XS + [0] >= [0] = c_4() from#(X) = [1] X + [0] >= [0] = c_5() from#(X) = [1] X + [0] >= [0] = c_6() s#(X) = [1] X + [0] >= [0] = c_7() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() after#(0(),XS) -> c_4() from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: after#(0(),XS) -> c_4() 3: from#(X) -> c_5() 4: from#(X) -> c_6() 5: s#(X) -> c_7() 6: activate#(n__from(X)) -> c_2(from#(activate(X))) 7: activate#(n__s(X)) -> c_3(s#(activate(X))) * Step 6: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() - Weak DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) after#(0(),XS) -> c_4() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_5() 2:S:from#(X) -> c_6() 3:S:s#(X) -> c_7() 4:W:activate#(X) -> c_1() 5:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_6():2 -->_1 from#(X) -> c_5():1 6:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_7():3 7:W:after#(0(),XS) -> c_4() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: after#(0(),XS) -> c_4() 4: activate#(X) -> c_1() * Step 7: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_5() from#(X) -> c_6() s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: from#(X) -> c_5() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_6() s#(X) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0 ,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} Problem (S) - Strict DPs: from#(X) -> c_6() s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_5() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0 ,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} ** Step 7.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_5() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_6() s#(X) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_5() 2:W:from#(X) -> c_6() 3:W:s#(X) -> c_7() 5:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_5():1 -->_1 from#(X) -> c_6():2 6:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_7():3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: activate#(n__s(X)) -> c_3(s#(activate(X))) 3: s#(X) -> c_7() 2: from#(X) -> c_6() ** Step 7.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_5() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:from#(X) -> c_5() 5:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_5():1 The dependency graph contains no loops, we remove all dependency pairs. ** Step 7.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 7.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_5() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_6() 2:S:s#(X) -> c_7() 3:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_5():5 -->_1 from#(X) -> c_6():1 4:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_7():2 5:W:from#(X) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: from#(X) -> c_5() ** Step 7.b:2: Decompose WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) s#(X) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0 ,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} Problem (S) - Strict DPs: s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0 ,c_2/1,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} *** Step 7.b:2.a:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) s#(X) -> c_7() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:from#(X) -> c_6() 2:W:s#(X) -> c_7() 3:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_6():1 4:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_7():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: activate#(n__s(X)) -> c_3(s#(activate(X))) 2: s#(X) -> c_7() *** Step 7.b:2.a:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:from#(X) -> c_6() 3:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_6():1 The dependency graph contains no loops, we remove all dependency pairs. *** Step 7.b:2.a:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 7.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_7() - Weak DPs: activate#(n__from(X)) -> c_2(from#(activate(X))) activate#(n__s(X)) -> c_3(s#(activate(X))) from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:s#(X) -> c_7() 2:W:activate#(n__from(X)) -> c_2(from#(activate(X))) -->_1 from#(X) -> c_6():4 3:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_7():1 4:W:from#(X) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: activate#(n__from(X)) -> c_2(from#(activate(X))) 4: from#(X) -> c_6() *** Step 7.b:2.b:2: Trivial WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: s#(X) -> c_7() - Weak DPs: activate#(n__s(X)) -> c_3(s#(activate(X))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: Trivial + Details: Consider the dependency graph 1:S:s#(X) -> c_7() 3:W:activate#(n__s(X)) -> c_3(s#(activate(X))) -->_1 s#(X) -> c_7():1 The dependency graph contains no loops, we remove all dependency pairs. *** Step 7.b:2.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) - Signature: {activate/1,after/2,from/1,s/1,activate#/1,after#/2,from#/1,s#/1} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#,s#} and constructors {0,cons ,n__from,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))