WORST_CASE(?,O(n^1)) * Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1} / {0/0,cons/2,n__from/1,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,after,from} and constructors {0,cons,n__from,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) after(0(),XS) -> XS after(s(N),cons(X,XS)) -> after(N,activate(XS)) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(after#) = {2}, uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [14] p(after) = [0] p(cons) = [1] x2 + [4] p(from) = [1] x1 + [13] p(n__from) = [1] x1 + [3] p(s) = [1] x1 + [5] p(activate#) = [3] x1 + [0] p(after#) = [1] x1 + [1] x2 + [0] p(from#) = [2] x1 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [2] p(c_5) = [0] p(c_6) = [0] Following rules are strictly oriented: activate#(n__from(X)) = [3] X + [9] > [2] X + [0] = c_2(from#(X)) activate(X) = [1] X + [14] > [1] X + [0] = X activate(n__from(X)) = [1] X + [17] > [1] X + [13] = from(X) from(X) = [1] X + [13] > [1] X + [12] = cons(X,n__from(s(X))) from(X) = [1] X + [13] > [1] X + [3] = n__from(X) Following rules are (at-least) weakly oriented: activate#(X) = [3] X + [0] >= [0] = c_1() after#(0(),XS) = [1] XS + [0] >= [0] = c_3() after#(s(N),cons(X,XS)) = [1] N + [1] XS + [9] >= [1] N + [1] XS + [16] = c_4(after#(N,activate(XS))) from#(X) = [2] X + [0] >= [0] = c_5() from#(X) = [2] X + [0] >= [0] = c_6() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() after#(0(),XS) -> c_3() after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_2(from#(X)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: after#(0(),XS) -> c_3() 3: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) 4: from#(X) -> c_5() 5: from#(X) -> c_6() 6: activate#(n__from(X)) -> c_2(from#(X)) * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() - Weak DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(X)) after#(0(),XS) -> c_3() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) -->_1 after#(0(),XS) -> c_3():6 -->_1 after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))):1 2:S:from#(X) -> c_5() 3:S:from#(X) -> c_6() 4:W:activate#(X) -> c_1() 5:W:activate#(n__from(X)) -> c_2(from#(X)) -->_1 from#(X) -> c_6():3 -->_1 from#(X) -> c_5():2 6:W:after#(0(),XS) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: activate#(X) -> c_1() 6: after#(0(),XS) -> c_3() * Step 6: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() - Weak DPs: activate#(n__from(X)) -> c_2(from#(X)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) -->_1 after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))):1 2:S:from#(X) -> c_5() 3:S:from#(X) -> c_6() 5:W:activate#(n__from(X)) -> c_2(from#(X)) -->_1 from#(X) -> c_6():3 -->_1 from#(X) -> c_5():2 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(5,activate#(n__from(X)) -> c_2(from#(X)))] * Step 7: RemoveHeads WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) from#(X) -> c_5() from#(X) -> c_6() - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) -->_1 after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))):1 2:S:from#(X) -> c_5() 3:S:from#(X) -> c_6() Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,from#(X) -> c_5()),(3,from#(X) -> c_6())] * Step 8: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) The strictly oriented rules are moved into the weak component. ** Step 8.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {activate,from,activate#,after#,from#} TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [0] p(after) = [1] x1 + [8] x2 + [0] p(cons) = [1] x2 + [0] p(from) = [0] p(n__from) = [0] p(s) = [1] x1 + [2] p(activate#) = [0] p(after#) = [8] x1 + [8] x2 + [10] p(from#) = [0] p(c_1) = [1] p(c_2) = [1] p(c_3) = [0] p(c_4) = [1] x1 + [3] p(c_5) = [1] p(c_6) = [0] Following rules are strictly oriented: after#(s(N),cons(X,XS)) = [8] N + [8] XS + [26] > [8] N + [8] XS + [13] = c_4(after#(N,activate(XS))) Following rules are (at-least) weakly oriented: activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__from(X)) = [0] >= [0] = from(X) from(X) = [0] >= [0] = cons(X,n__from(s(X))) from(X) = [0] >= [0] = n__from(X) ** Step 8.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 8.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) -->_1 after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: after#(s(N),cons(X,XS)) -> c_4(after#(N,activate(XS))) ** Step 8.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(X) from(X) -> cons(X,n__from(s(X))) from(X) -> n__from(X) - Signature: {activate/1,after/2,from/1,activate#/1,after#/2,from#/1} / {0/0,cons/2,n__from/1,s/1,c_1/0,c_2/1,c_3/0,c_4/1 ,c_5/0,c_6/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,after#,from#} and constructors {0,cons,n__from ,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))