MAYBE
* Step 1: InnermostRuleRemoval MAYBE
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            first(0(),Z) -> nil()
            first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
            first1(0(),Z) -> nil1()
            first1(s(X),cons(Y,Z)) -> cons1(quote(Y),first1(X,activate(Z)))
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            quote(n__0()) -> 01()
            quote(n__s(X)) -> s1(quote(activate(X)))
            quote(n__sel(X,Z)) -> sel1(activate(X),activate(Z))
            quote1(n__cons(X,Z)) -> cons1(quote(activate(X)),quote1(activate(Z)))
            quote1(n__first(X,Z)) -> first1(activate(X),activate(Z))
            quote1(n__nil()) -> nil1()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            sel(0(),cons(X,Z)) -> X
            sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
            sel1(0(),cons(X,Z)) -> quote(X)
            sel1(s(X),cons(Y,Z)) -> sel1(X,activate(Z))
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0,n__s/1,n__sel/2,nil1/0,s1/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,cons,fcons,first,first1,from,nil,quote,quote1
            ,s,sel,sel1,unquote,unquote1} and constructors {01,cons1,n__0,n__cons,n__first,n__from,n__nil,n__s,n__sel
            ,nil1,s1}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          first(0(),Z) -> nil()
          first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
          first1(0(),Z) -> nil1()
          first1(s(X),cons(Y,Z)) -> cons1(quote(Y),first1(X,activate(Z)))
          sel(0(),cons(X,Z)) -> X
          sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
          sel1(0(),cons(X,Z)) -> quote(X)
          sel1(s(X),cons(Y,Z)) -> sel1(X,activate(Z))
        All above mentioned rules can be savely removed.
* Step 2: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            quote(n__0()) -> 01()
            quote(n__s(X)) -> s1(quote(activate(X)))
            quote(n__sel(X,Z)) -> sel1(activate(X),activate(Z))
            quote1(n__cons(X,Z)) -> cons1(quote(activate(X)),quote1(activate(Z)))
            quote1(n__first(X,Z)) -> first1(activate(X),activate(Z))
            quote1(n__nil()) -> nil1()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0,n__s/1,n__sel/2,nil1/0,s1/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,cons,fcons,first,first1,from,nil,quote,quote1
            ,s,sel,sel1,unquote,unquote1} and constructors {01,cons1,n__0,n__cons,n__first,n__from,n__nil,n__s,n__sel
            ,nil1,s1}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          0#() -> c_1()
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3(0#())
          activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          activate#(n__from(X)) -> c_6(from#(X))
          activate#(n__nil()) -> c_7(nil#())
          activate#(n__s(X)) -> c_8(s#(X))
          activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          cons#(X1,X2) -> c_10()
          fcons#(X,Z) -> c_11(cons#(X,Z))
          first#(X1,X2) -> c_12()
          from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          from#(X) -> c_14()
          nil#() -> c_15()
          quote#(n__0()) -> c_16()
          quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
          quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
          quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          quote1#(n__nil()) -> c_21()
          s#(X) -> c_22()
          sel#(X1,X2) -> c_23()
          unquote#(01()) -> c_24(0#())
          unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
          unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
          unquote1#(nil1()) -> c_27(nil#())
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
            activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
            activate#(n__from(X)) -> c_6(from#(X))
            activate#(n__nil()) -> c_7(nil#())
            activate#(n__s(X)) -> c_8(s#(X))
            activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
            cons#(X1,X2) -> c_10()
            fcons#(X,Z) -> c_11(cons#(X,Z))
            first#(X1,X2) -> c_12()
            from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
            from#(X) -> c_14()
            nil#() -> c_15()
            quote#(n__0()) -> c_16()
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__nil()) -> c_21()
            s#(X) -> c_22()
            sel#(X1,X2) -> c_23()
            unquote#(01()) -> c_24(0#())
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
            unquote1#(nil1()) -> c_27(nil#())
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            quote(n__0()) -> 01()
            quote(n__s(X)) -> s1(quote(activate(X)))
            quote(n__sel(X,Z)) -> sel1(activate(X),activate(Z))
            quote1(n__cons(X,Z)) -> cons1(quote(activate(X)),quote1(activate(Z)))
            quote1(n__first(X,Z)) -> first1(activate(X),activate(Z))
            quote1(n__nil()) -> nil1()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__cons(X1,X2)) -> cons(X1,X2)
          activate(n__first(X1,X2)) -> first(X1,X2)
          activate(n__from(X)) -> from(X)
          activate(n__nil()) -> nil()
          activate(n__s(X)) -> s(X)
          activate(n__sel(X1,X2)) -> sel(X1,X2)
          cons(X1,X2) -> n__cons(X1,X2)
          fcons(X,Z) -> cons(X,Z)
          first(X1,X2) -> n__first(X1,X2)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          nil() -> n__nil()
          s(X) -> n__s(X)
          sel(X1,X2) -> n__sel(X1,X2)
          unquote(01()) -> 0()
          unquote(s1(X)) -> s(unquote(X))
          unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
          unquote1(nil1()) -> nil()
          0#() -> c_1()
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3(0#())
          activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          activate#(n__from(X)) -> c_6(from#(X))
          activate#(n__nil()) -> c_7(nil#())
          activate#(n__s(X)) -> c_8(s#(X))
          activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          cons#(X1,X2) -> c_10()
          fcons#(X,Z) -> c_11(cons#(X,Z))
          first#(X1,X2) -> c_12()
          from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          from#(X) -> c_14()
          nil#() -> c_15()
          quote#(n__0()) -> c_16()
          quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
          quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
          quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          quote1#(n__nil()) -> c_21()
          s#(X) -> c_22()
          sel#(X1,X2) -> c_23()
          unquote#(01()) -> c_24(0#())
          unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
          unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
          unquote1#(nil1()) -> c_27(nil#())
* Step 4: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
            activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
            activate#(n__from(X)) -> c_6(from#(X))
            activate#(n__nil()) -> c_7(nil#())
            activate#(n__s(X)) -> c_8(s#(X))
            activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
            cons#(X1,X2) -> c_10()
            fcons#(X,Z) -> c_11(cons#(X,Z))
            first#(X1,X2) -> c_12()
            from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
            from#(X) -> c_14()
            nil#() -> c_15()
            quote#(n__0()) -> c_16()
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__nil()) -> c_21()
            s#(X) -> c_22()
            sel#(X1,X2) -> c_23()
            unquote#(01()) -> c_24(0#())
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
            unquote1#(nil1()) -> c_27(nil#())
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,10,12,14,15,16,21,22,23}
        by application of
          Pre({1,2,10,12,14,15,16,21,22,23}) = {3,4,5,6,7,8,9,11,13,17,18,19,20,24,25,27}.
        Here rules are labelled as follows:
          1: 0#() -> c_1()
          2: activate#(X) -> c_2()
          3: activate#(n__0()) -> c_3(0#())
          4: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          5: activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          6: activate#(n__from(X)) -> c_6(from#(X))
          7: activate#(n__nil()) -> c_7(nil#())
          8: activate#(n__s(X)) -> c_8(s#(X))
          9: activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          10: cons#(X1,X2) -> c_10()
          11: fcons#(X,Z) -> c_11(cons#(X,Z))
          12: first#(X1,X2) -> c_12()
          13: from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          14: from#(X) -> c_14()
          15: nil#() -> c_15()
          16: quote#(n__0()) -> c_16()
          17: quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
          18: quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          19: quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
          20: quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          21: quote1#(n__nil()) -> c_21()
          22: s#(X) -> c_22()
          23: sel#(X1,X2) -> c_23()
          24: unquote#(01()) -> c_24(0#())
          25: unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
          26: unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
          27: unquote1#(nil1()) -> c_27(nil#())
* Step 5: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            activate#(n__0()) -> c_3(0#())
            activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
            activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
            activate#(n__from(X)) -> c_6(from#(X))
            activate#(n__nil()) -> c_7(nil#())
            activate#(n__s(X)) -> c_8(s#(X))
            activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
            fcons#(X,Z) -> c_11(cons#(X,Z))
            from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            unquote#(01()) -> c_24(0#())
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
            unquote1#(nil1()) -> c_27(nil#())
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            cons#(X1,X2) -> c_10()
            first#(X1,X2) -> c_12()
            from#(X) -> c_14()
            nil#() -> c_15()
            quote#(n__0()) -> c_16()
            quote1#(n__nil()) -> c_21()
            s#(X) -> c_22()
            sel#(X1,X2) -> c_23()
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,5,6,7,8,9,14,17}
        by application of
          Pre({1,2,3,5,6,7,8,9,14,17}) = {4,10,11,12,13,15,16}.
        Here rules are labelled as follows:
          1: activate#(n__0()) -> c_3(0#())
          2: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          3: activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          4: activate#(n__from(X)) -> c_6(from#(X))
          5: activate#(n__nil()) -> c_7(nil#())
          6: activate#(n__s(X)) -> c_8(s#(X))
          7: activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          8: fcons#(X,Z) -> c_11(cons#(X,Z))
          9: from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          10: quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
          11: quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          12: quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
          13: quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          14: unquote#(01()) -> c_24(0#())
          15: unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
          16: unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
          17: unquote1#(nil1()) -> c_27(nil#())
          18: 0#() -> c_1()
          19: activate#(X) -> c_2()
          20: cons#(X1,X2) -> c_10()
          21: first#(X1,X2) -> c_12()
          22: from#(X) -> c_14()
          23: nil#() -> c_15()
          24: quote#(n__0()) -> c_16()
          25: quote1#(n__nil()) -> c_21()
          26: s#(X) -> c_22()
          27: sel#(X1,X2) -> c_23()
* Step 6: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            activate#(n__from(X)) -> c_6(from#(X))
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
            activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
            activate#(n__nil()) -> c_7(nil#())
            activate#(n__s(X)) -> c_8(s#(X))
            activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
            cons#(X1,X2) -> c_10()
            fcons#(X,Z) -> c_11(cons#(X,Z))
            first#(X1,X2) -> c_12()
            from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
            from#(X) -> c_14()
            nil#() -> c_15()
            quote#(n__0()) -> c_16()
            quote1#(n__nil()) -> c_21()
            s#(X) -> c_22()
            sel#(X1,X2) -> c_23()
            unquote#(01()) -> c_24(0#())
            unquote1#(nil1()) -> c_27(nil#())
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {2,3,4,5}.
        Here rules are labelled as follows:
          1: activate#(n__from(X)) -> c_6(from#(X))
          2: quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
          3: quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          4: quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
          5: quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          6: unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
          7: unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
          8: 0#() -> c_1()
          9: activate#(X) -> c_2()
          10: activate#(n__0()) -> c_3(0#())
          11: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          12: activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          13: activate#(n__nil()) -> c_7(nil#())
          14: activate#(n__s(X)) -> c_8(s#(X))
          15: activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          16: cons#(X1,X2) -> c_10()
          17: fcons#(X,Z) -> c_11(cons#(X,Z))
          18: first#(X1,X2) -> c_12()
          19: from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          20: from#(X) -> c_14()
          21: nil#() -> c_15()
          22: quote#(n__0()) -> c_16()
          23: quote1#(n__nil()) -> c_21()
          24: s#(X) -> c_22()
          25: sel#(X1,X2) -> c_23()
          26: unquote#(01()) -> c_24(0#())
          27: unquote1#(nil1()) -> c_27(nil#())
* Step 7: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
            activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
            activate#(n__from(X)) -> c_6(from#(X))
            activate#(n__nil()) -> c_7(nil#())
            activate#(n__s(X)) -> c_8(s#(X))
            activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
            cons#(X1,X2) -> c_10()
            fcons#(X,Z) -> c_11(cons#(X,Z))
            first#(X1,X2) -> c_12()
            from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
            from#(X) -> c_14()
            nil#() -> c_15()
            quote#(n__0()) -> c_16()
            quote1#(n__nil()) -> c_21()
            s#(X) -> c_22()
            sel#(X1,X2) -> c_23()
            unquote#(01()) -> c_24(0#())
            unquote1#(nil1()) -> c_27(nil#())
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,4}
        by application of
          Pre({2,4}) = {1,3}.
        Here rules are labelled as follows:
          1: quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
          2: quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          3: quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
          4: quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          5: unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
          6: unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
          7: 0#() -> c_1()
          8: activate#(X) -> c_2()
          9: activate#(n__0()) -> c_3(0#())
          10: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          11: activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          12: activate#(n__from(X)) -> c_6(from#(X))
          13: activate#(n__nil()) -> c_7(nil#())
          14: activate#(n__s(X)) -> c_8(s#(X))
          15: activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          16: cons#(X1,X2) -> c_10()
          17: fcons#(X,Z) -> c_11(cons#(X,Z))
          18: first#(X1,X2) -> c_12()
          19: from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          20: from#(X) -> c_14()
          21: nil#() -> c_15()
          22: quote#(n__0()) -> c_16()
          23: quote1#(n__nil()) -> c_21()
          24: s#(X) -> c_22()
          25: sel#(X1,X2) -> c_23()
          26: unquote#(01()) -> c_24(0#())
          27: unquote1#(nil1()) -> c_27(nil#())
* Step 8: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
        - Weak DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
            activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
            activate#(n__from(X)) -> c_6(from#(X))
            activate#(n__nil()) -> c_7(nil#())
            activate#(n__s(X)) -> c_8(s#(X))
            activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
            cons#(X1,X2) -> c_10()
            fcons#(X,Z) -> c_11(cons#(X,Z))
            first#(X1,X2) -> c_12()
            from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
            from#(X) -> c_14()
            nil#() -> c_15()
            quote#(n__0()) -> c_16()
            quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
            quote1#(n__nil()) -> c_21()
            s#(X) -> c_22()
            sel#(X1,X2) -> c_23()
            unquote#(01()) -> c_24(0#())
            unquote1#(nil1()) -> c_27(nil#())
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
             -->_1 quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z)):21
             -->_2 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_2 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_2 activate#(n__nil()) -> c_7(nil#()):11
             -->_2 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_2 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_2 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_2 activate#(n__0()) -> c_3(0#()):7
             -->_1 quote#(n__0()) -> c_16():20
             -->_2 activate#(X) -> c_2():6
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X)):1
          
          2:S:quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
             -->_3 quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z)):22
             -->_1 quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z)):21
             -->_4 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_2 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_4 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_2 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_4 activate#(n__nil()) -> c_7(nil#()):11
             -->_2 activate#(n__nil()) -> c_7(nil#()):11
             -->_4 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_2 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_4 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_2 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_4 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_2 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_4 activate#(n__0()) -> c_3(0#()):7
             -->_2 activate#(n__0()) -> c_3(0#()):7
             -->_3 quote1#(n__nil()) -> c_21():23
             -->_1 quote#(n__0()) -> c_16():20
             -->_4 activate#(X) -> c_2():6
             -->_2 activate#(X) -> c_2():6
             -->_3 quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z)):2
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X)):1
          
          3:S:unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
             -->_2 unquote#(01()) -> c_24(0#()):26
             -->_1 s#(X) -> c_22():24
             -->_2 unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X)):3
          
          4:S:unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
             -->_3 unquote1#(nil1()) -> c_27(nil#()):27
             -->_2 unquote#(01()) -> c_24(0#()):26
             -->_1 fcons#(X,Z) -> c_11(cons#(X,Z)):15
             -->_3 unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z)):4
             -->_2 unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X)):3
          
          5:W:0#() -> c_1()
             
          
          6:W:activate#(X) -> c_2()
             
          
          7:W:activate#(n__0()) -> c_3(0#())
             -->_1 0#() -> c_1():5
          
          8:W:activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
             -->_1 cons#(X1,X2) -> c_10():14
          
          9:W:activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
             -->_1 first#(X1,X2) -> c_12():16
          
          10:W:activate#(n__from(X)) -> c_6(from#(X))
             -->_1 from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X)):17
             -->_1 from#(X) -> c_14():18
          
          11:W:activate#(n__nil()) -> c_7(nil#())
             -->_1 nil#() -> c_15():19
          
          12:W:activate#(n__s(X)) -> c_8(s#(X))
             -->_1 s#(X) -> c_22():24
          
          13:W:activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
             -->_1 sel#(X1,X2) -> c_23():25
          
          14:W:cons#(X1,X2) -> c_10()
             
          
          15:W:fcons#(X,Z) -> c_11(cons#(X,Z))
             -->_1 cons#(X1,X2) -> c_10():14
          
          16:W:first#(X1,X2) -> c_12()
             
          
          17:W:from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
             -->_2 s#(X) -> c_22():24
             -->_1 cons#(X1,X2) -> c_10():14
          
          18:W:from#(X) -> c_14()
             
          
          19:W:nil#() -> c_15()
             
          
          20:W:quote#(n__0()) -> c_16()
             
          
          21:W:quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
             -->_3 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_2 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_3 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_2 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_3 activate#(n__nil()) -> c_7(nil#()):11
             -->_2 activate#(n__nil()) -> c_7(nil#()):11
             -->_3 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_2 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_3 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_2 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_3 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_2 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_3 activate#(n__0()) -> c_3(0#()):7
             -->_2 activate#(n__0()) -> c_3(0#()):7
             -->_3 activate#(X) -> c_2():6
             -->_2 activate#(X) -> c_2():6
          
          22:W:quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
             -->_3 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_2 activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2)):13
             -->_3 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_2 activate#(n__s(X)) -> c_8(s#(X)):12
             -->_3 activate#(n__nil()) -> c_7(nil#()):11
             -->_2 activate#(n__nil()) -> c_7(nil#()):11
             -->_3 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_2 activate#(n__from(X)) -> c_6(from#(X)):10
             -->_3 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_2 activate#(n__first(X1,X2)) -> c_5(first#(X1,X2)):9
             -->_3 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_2 activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2)):8
             -->_3 activate#(n__0()) -> c_3(0#()):7
             -->_2 activate#(n__0()) -> c_3(0#()):7
             -->_3 activate#(X) -> c_2():6
             -->_2 activate#(X) -> c_2():6
          
          23:W:quote1#(n__nil()) -> c_21()
             
          
          24:W:s#(X) -> c_22()
             
          
          25:W:sel#(X1,X2) -> c_23()
             
          
          26:W:unquote#(01()) -> c_24(0#())
             -->_1 0#() -> c_1():5
          
          27:W:unquote1#(nil1()) -> c_27(nil#())
             -->_1 nil#() -> c_15():19
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          15: fcons#(X,Z) -> c_11(cons#(X,Z))
          27: unquote1#(nil1()) -> c_27(nil#())
          26: unquote#(01()) -> c_24(0#())
          23: quote1#(n__nil()) -> c_21()
          22: quote1#(n__first(X,Z)) -> c_20(first1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          20: quote#(n__0()) -> c_16()
          21: quote#(n__sel(X,Z)) -> c_18(sel1#(activate(X),activate(Z)),activate#(X),activate#(Z))
          6: activate#(X) -> c_2()
          7: activate#(n__0()) -> c_3(0#())
          5: 0#() -> c_1()
          8: activate#(n__cons(X1,X2)) -> c_4(cons#(X1,X2))
          9: activate#(n__first(X1,X2)) -> c_5(first#(X1,X2))
          16: first#(X1,X2) -> c_12()
          10: activate#(n__from(X)) -> c_6(from#(X))
          18: from#(X) -> c_14()
          17: from#(X) -> c_13(cons#(X,n__from(s(X))),s#(X))
          14: cons#(X1,X2) -> c_10()
          11: activate#(n__nil()) -> c_7(nil#())
          19: nil#() -> c_15()
          12: activate#(n__s(X)) -> c_8(s#(X))
          24: s#(X) -> c_22()
          13: activate#(n__sel(X1,X2)) -> c_9(sel#(X1,X2))
          25: sel#(X1,X2) -> c_23()
* Step 9: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
            unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/2,c_18/3,c_19/4,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/2,c_26/3,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X))
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X)):1
          
          2:S:quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z))
             -->_3 quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),activate#(X),quote1#(activate(Z)),activate#(Z)):2
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X)),activate#(X)):1
          
          3:S:unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X))
             -->_2 unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X)):3
          
          4:S:unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z))
             -->_3 unquote1#(cons1(X,Z)) -> c_26(fcons#(unquote(X),unquote1(Z)),unquote#(X),unquote1#(Z)):4
             -->_2 unquote#(s1(X)) -> c_25(s#(unquote(X)),unquote#(X)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          quote#(n__s(X)) -> c_17(quote#(activate(X)))
          quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
          unquote#(s1(X)) -> c_25(unquote#(X))
          unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
* Step 10: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            fcons(X,Z) -> cons(X,Z)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
            unquote(01()) -> 0()
            unquote(s1(X)) -> s(unquote(X))
            unquote1(cons1(X,Z)) -> fcons(unquote(X),unquote1(Z))
            unquote1(nil1()) -> nil()
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__cons(X1,X2)) -> cons(X1,X2)
          activate(n__first(X1,X2)) -> first(X1,X2)
          activate(n__from(X)) -> from(X)
          activate(n__nil()) -> nil()
          activate(n__s(X)) -> s(X)
          activate(n__sel(X1,X2)) -> sel(X1,X2)
          cons(X1,X2) -> n__cons(X1,X2)
          first(X1,X2) -> n__first(X1,X2)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          nil() -> n__nil()
          s(X) -> n__s(X)
          sel(X1,X2) -> n__sel(X1,X2)
          quote#(n__s(X)) -> c_17(quote#(activate(X)))
          quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
          unquote#(s1(X)) -> c_25(unquote#(X))
          unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
* Step 11: Decompose MAYBE
    + Considered Problem:
        - Strict DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)))
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              quote#(n__s(X)) -> c_17(quote#(activate(X)))
          - Weak DPs:
              quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
              unquote#(s1(X)) -> c_25(unquote#(X))
              unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          - Weak TRS:
              0() -> n__0()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__cons(X1,X2)) -> cons(X1,X2)
              activate(n__first(X1,X2)) -> first(X1,X2)
              activate(n__from(X)) -> from(X)
              activate(n__nil()) -> nil()
              activate(n__s(X)) -> s(X)
              activate(n__sel(X1,X2)) -> sel(X1,X2)
              cons(X1,X2) -> n__cons(X1,X2)
              first(X1,X2) -> n__first(X1,X2)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              nil() -> n__nil()
              s(X) -> n__s(X)
              sel(X1,X2) -> n__sel(X1,X2)
          - Signature:
              {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
              ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
              ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
              ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
              ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
              ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
              ,n__nil,n__s,n__sel,nil1,s1}
        
        Problem (S)
          - Strict DPs:
              quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
              unquote#(s1(X)) -> c_25(unquote#(X))
              unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          - Weak DPs:
              quote#(n__s(X)) -> c_17(quote#(activate(X)))
          - Weak TRS:
              0() -> n__0()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__cons(X1,X2)) -> cons(X1,X2)
              activate(n__first(X1,X2)) -> first(X1,X2)
              activate(n__from(X)) -> from(X)
              activate(n__nil()) -> nil()
              activate(n__s(X)) -> s(X)
              activate(n__sel(X1,X2)) -> sel(X1,X2)
              cons(X1,X2) -> n__cons(X1,X2)
              first(X1,X2) -> n__first(X1,X2)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              nil() -> n__nil()
              s(X) -> n__s(X)
              sel(X1,X2) -> n__sel(X1,X2)
          - Signature:
              {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
              ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
              ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
              ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
              ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
              ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
              ,n__nil,n__s,n__sel,nil1,s1}
** Step 11.a:1: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)))
        - Weak DPs:
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:quote#(n__s(X)) -> c_17(quote#(activate(X)))
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X))):1
          
          2:W:quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X))):1
             -->_2 quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z))):2
          
          3:W:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):3
          
          4:W:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):3
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          3: unquote#(s1(X)) -> c_25(unquote#(X))
** Step 11.a:2: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          quote#(n__s(X)) -> c_17(quote#(activate(X)))
      - Weak DPs:
          quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
      - Weak TRS:
          0() -> n__0()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__cons(X1,X2)) -> cons(X1,X2)
          activate(n__first(X1,X2)) -> first(X1,X2)
          activate(n__from(X)) -> from(X)
          activate(n__nil()) -> nil()
          activate(n__s(X)) -> s(X)
          activate(n__sel(X1,X2)) -> sel(X1,X2)
          cons(X1,X2) -> n__cons(X1,X2)
          first(X1,X2) -> n__first(X1,X2)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          nil() -> n__nil()
          s(X) -> n__s(X)
          sel(X1,X2) -> n__sel(X1,X2)
      - Signature:
          {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
          ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
          ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
          ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
          ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
          ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
          ,n__nil,n__s,n__sel,nil1,s1}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
** Step 11.b:1: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak DPs:
            quote#(n__s(X)) -> c_17(quote#(activate(X)))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X))):4
             -->_2 quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z))):1
          
          2:S:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
          
          3:S:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):3
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
          
          4:W:quote#(n__s(X)) -> c_17(quote#(activate(X)))
             -->_1 quote#(n__s(X)) -> c_17(quote#(activate(X))):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: quote#(n__s(X)) -> c_17(quote#(activate(X)))
** Step 11.b:2: SimplifyRHS MAYBE
    + Considered Problem:
        - Strict DPs:
            quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/2,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z)))
             -->_2 quote1#(n__cons(X,Z)) -> c_19(quote#(activate(X)),quote1#(activate(Z))):1
          
          2:S:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
          
          3:S:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):3
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
** Step 11.b:3: Decompose MAYBE
    + Considered Problem:
        - Strict DPs:
            quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
          - Weak DPs:
              unquote#(s1(X)) -> c_25(unquote#(X))
              unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          - Weak TRS:
              0() -> n__0()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__cons(X1,X2)) -> cons(X1,X2)
              activate(n__first(X1,X2)) -> first(X1,X2)
              activate(n__from(X)) -> from(X)
              activate(n__nil()) -> nil()
              activate(n__s(X)) -> s(X)
              activate(n__sel(X1,X2)) -> sel(X1,X2)
              cons(X1,X2) -> n__cons(X1,X2)
              first(X1,X2) -> n__first(X1,X2)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              nil() -> n__nil()
              s(X) -> n__s(X)
              sel(X1,X2) -> n__sel(X1,X2)
          - Signature:
              {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
              ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
              ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
              ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
              ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
              ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
              ,n__nil,n__s,n__sel,nil1,s1}
        
        Problem (S)
          - Strict DPs:
              unquote#(s1(X)) -> c_25(unquote#(X))
              unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          - Weak DPs:
              quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
          - Weak TRS:
              0() -> n__0()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__cons(X1,X2)) -> cons(X1,X2)
              activate(n__first(X1,X2)) -> first(X1,X2)
              activate(n__from(X)) -> from(X)
              activate(n__nil()) -> nil()
              activate(n__s(X)) -> s(X)
              activate(n__sel(X1,X2)) -> sel(X1,X2)
              cons(X1,X2) -> n__cons(X1,X2)
              first(X1,X2) -> n__first(X1,X2)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              nil() -> n__nil()
              s(X) -> n__s(X)
              sel(X1,X2) -> n__sel(X1,X2)
          - Signature:
              {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
              ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
              ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
              ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
              ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
              ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
              ,n__nil,n__s,n__sel,nil1,s1}
*** Step 11.b:3.a:1: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
        - Weak DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
             -->_1 quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z))):1
          
          2:W:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
          
          3:W:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          2: unquote#(s1(X)) -> c_25(unquote#(X))
*** Step 11.b:3.a:2: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
      - Weak TRS:
          0() -> n__0()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__cons(X1,X2)) -> cons(X1,X2)
          activate(n__first(X1,X2)) -> first(X1,X2)
          activate(n__from(X)) -> from(X)
          activate(n__nil()) -> nil()
          activate(n__s(X)) -> s(X)
          activate(n__sel(X1,X2)) -> sel(X1,X2)
          cons(X1,X2) -> n__cons(X1,X2)
          first(X1,X2) -> n__first(X1,X2)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          nil() -> n__nil()
          s(X) -> n__s(X)
          sel(X1,X2) -> n__sel(X1,X2)
      - Signature:
          {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
          ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
          ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
          ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
          ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
          ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
          ,n__nil,n__s,n__sel,nil1,s1}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
*** Step 11.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak DPs:
            quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):1
          
          2:S:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):2
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):1
          
          3:W:quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
             -->_1 quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z))):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: quote1#(n__cons(X,Z)) -> c_19(quote1#(activate(Z)))
*** Step 11.b:3.b:2: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              unquote#(s1(X)) -> c_25(unquote#(X))
          - Weak DPs:
              unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          - Weak TRS:
              0() -> n__0()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__cons(X1,X2)) -> cons(X1,X2)
              activate(n__first(X1,X2)) -> first(X1,X2)
              activate(n__from(X)) -> from(X)
              activate(n__nil()) -> nil()
              activate(n__s(X)) -> s(X)
              activate(n__sel(X1,X2)) -> sel(X1,X2)
              cons(X1,X2) -> n__cons(X1,X2)
              first(X1,X2) -> n__first(X1,X2)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              nil() -> n__nil()
              s(X) -> n__s(X)
              sel(X1,X2) -> n__sel(X1,X2)
          - Signature:
              {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
              ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
              ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
              ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
              ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
              ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
              ,n__nil,n__s,n__sel,nil1,s1}
        
        Problem (S)
          - Strict DPs:
              unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          - Weak DPs:
              unquote#(s1(X)) -> c_25(unquote#(X))
          - Weak TRS:
              0() -> n__0()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__cons(X1,X2)) -> cons(X1,X2)
              activate(n__first(X1,X2)) -> first(X1,X2)
              activate(n__from(X)) -> from(X)
              activate(n__nil()) -> nil()
              activate(n__s(X)) -> s(X)
              activate(n__sel(X1,X2)) -> sel(X1,X2)
              cons(X1,X2) -> n__cons(X1,X2)
              first(X1,X2) -> n__first(X1,X2)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              nil() -> n__nil()
              s(X) -> n__s(X)
              sel(X1,X2) -> n__sel(X1,X2)
          - Signature:
              {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
              ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
              ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
              ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
              ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
              ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
              ,n__nil,n__s,n__sel,nil1,s1}
**** Step 11.b:3.b:2.a:1: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
        - Weak DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          unquote#(s1(X)) -> c_25(unquote#(X))
          unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
**** Step 11.b:3.b:2.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
        - Weak DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: unquote#(s1(X)) -> c_25(unquote#(X))
          
        The strictly oriented rules are moved into the weak component.
***** Step 11.b:3.b:2.a:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
        - Weak DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_25) = {1},
          uargs(c_26) = {1,2}
        
        Following symbols are considered usable:
          {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
                 p(01) = [0]                           
           p(activate) = [0]                           
               p(cons) = [0]                           
              p(cons1) = [1] x1 + [1] x2 + [3]         
              p(fcons) = [0]                           
              p(first) = [0]                           
             p(first1) = [0]                           
               p(from) = [0]                           
               p(n__0) = [0]                           
            p(n__cons) = [1] x1 + [1] x2 + [0]         
           p(n__first) = [1] x1 + [1] x2 + [0]         
            p(n__from) = [1] x1 + [0]                  
             p(n__nil) = [0]                           
               p(n__s) = [0]                           
             p(n__sel) = [1] x1 + [1]                  
                p(nil) = [0]                           
               p(nil1) = [1]                           
              p(quote) = [1]                           
             p(quote1) = [1] x1 + [8]                  
                  p(s) = [1]                           
                 p(s1) = [1] x1 + [2]                  
                p(sel) = [2] x1 + [2] x2 + [0]         
               p(sel1) = [0]                           
            p(unquote) = [8]                           
           p(unquote1) = [8] x1 + [1]                  
                 p(0#) = [0]                           
          p(activate#) = [1] x1 + [8]                  
              p(cons#) = [0]                           
             p(fcons#) = [2]                           
             p(first#) = [0]                           
            p(first1#) = [1] x1 + [1] x2 + [0]         
              p(from#) = [0]                           
               p(nil#) = [2]                           
             p(quote#) = [1] x1 + [1]                  
            p(quote1#) = [8] x1 + [0]                  
                 p(s#) = [1] x1 + [1]                  
               p(sel#) = [1] x1 + [1]                  
              p(sel1#) = [2]                           
           p(unquote#) = [2] x1 + [2]                  
          p(unquote1#) = [8] x1 + [0]                  
                p(c_1) = [0]                           
                p(c_2) = [1]                           
                p(c_3) = [8] x1 + [1]                  
                p(c_4) = [1] x1 + [1]                  
                p(c_5) = [1] x1 + [0]                  
                p(c_6) = [1] x1 + [0]                  
                p(c_7) = [1] x1 + [0]                  
                p(c_8) = [1] x1 + [0]                  
                p(c_9) = [0]                           
               p(c_10) = [2]                           
               p(c_11) = [0]                           
               p(c_12) = [0]                           
               p(c_13) = [4] x1 + [1] x2 + [1]         
               p(c_14) = [1]                           
               p(c_15) = [2]                           
               p(c_16) = [0]                           
               p(c_17) = [1]                           
               p(c_18) = [1] x3 + [1]                  
               p(c_19) = [0]                           
               p(c_20) = [4] x1 + [4] x2 + [1] x3 + [0]
               p(c_21) = [1]                           
               p(c_22) = [0]                           
               p(c_23) = [4]                           
               p(c_24) = [0]                           
               p(c_25) = [1] x1 + [2]                  
               p(c_26) = [4] x1 + [1] x2 + [11]        
               p(c_27) = [1] x1 + [0]                  
        
        Following rules are strictly oriented:
        unquote#(s1(X)) = [2] X + [6]      
                        > [2] X + [4]      
                        = c_25(unquote#(X))
        
        
        Following rules are (at-least) weakly oriented:
        unquote1#(cons1(X,Z)) =  [8] X + [8] Z + [24]          
                              >= [8] X + [8] Z + [19]          
                              =  c_26(unquote#(X),unquote1#(Z))
        
***** Step 11.b:3.b:2.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 11.b:3.b:2.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):1
          
          2:W:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):2
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
          1: unquote#(s1(X)) -> c_25(unquote#(X))
***** Step 11.b:3.b:2.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 11.b:3.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak DPs:
            unquote#(s1(X)) -> c_25(unquote#(X))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):1
          
          2:W:unquote#(s1(X)) -> c_25(unquote#(X))
             -->_1 unquote#(s1(X)) -> c_25(unquote#(X)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: unquote#(s1(X)) -> c_25(unquote#(X))
**** Step 11.b:3.b:2.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/2,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z))
             -->_2 unquote1#(cons1(X,Z)) -> c_26(unquote#(X),unquote1#(Z)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
**** Step 11.b:3.b:2.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(X1,X2)
            activate(n__first(X1,X2)) -> first(X1,X2)
            activate(n__from(X)) -> from(X)
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(X)
            activate(n__sel(X1,X2)) -> sel(X1,X2)
            cons(X1,X2) -> n__cons(X1,X2)
            first(X1,X2) -> n__first(X1,X2)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            nil() -> n__nil()
            s(X) -> n__s(X)
            sel(X1,X2) -> n__sel(X1,X2)
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/1,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
**** Step 11.b:3.b:2.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/1,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
          
        The strictly oriented rules are moved into the weak component.
***** Step 11.b:3.b:2.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/1,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_26) = {1}
        
        Following symbols are considered usable:
          {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
                 p(01) = [0]                           
           p(activate) = [0]                           
               p(cons) = [0]                           
              p(cons1) = [1] x2 + [8]                  
              p(fcons) = [0]                           
              p(first) = [0]                           
             p(first1) = [0]                           
               p(from) = [0]                           
               p(n__0) = [1]                           
            p(n__cons) = [1] x1 + [1] x2 + [1]         
           p(n__first) = [1]                           
            p(n__from) = [1] x1 + [1]                  
             p(n__nil) = [2]                           
               p(n__s) = [0]                           
             p(n__sel) = [2]                           
                p(nil) = [1]                           
               p(nil1) = [0]                           
              p(quote) = [1] x1 + [2]                  
             p(quote1) = [1]                           
                  p(s) = [1]                           
                 p(s1) = [1] x1 + [2]                  
                p(sel) = [1]                           
               p(sel1) = [0]                           
            p(unquote) = [0]                           
           p(unquote1) = [0]                           
                 p(0#) = [0]                           
          p(activate#) = [0]                           
              p(cons#) = [0]                           
             p(fcons#) = [0]                           
             p(first#) = [0]                           
            p(first1#) = [0]                           
              p(from#) = [0]                           
               p(nil#) = [0]                           
             p(quote#) = [0]                           
            p(quote1#) = [0]                           
                 p(s#) = [0]                           
               p(sel#) = [0]                           
              p(sel1#) = [0]                           
           p(unquote#) = [0]                           
          p(unquote1#) = [1] x1 + [0]                  
                p(c_1) = [0]                           
                p(c_2) = [0]                           
                p(c_3) = [8] x1 + [0]                  
                p(c_4) = [2] x1 + [0]                  
                p(c_5) = [0]                           
                p(c_6) = [0]                           
                p(c_7) = [2] x1 + [0]                  
                p(c_8) = [1] x1 + [4]                  
                p(c_9) = [0]                           
               p(c_10) = [2]                           
               p(c_11) = [8]                           
               p(c_12) = [1]                           
               p(c_13) = [4]                           
               p(c_14) = [2]                           
               p(c_15) = [0]                           
               p(c_16) = [0]                           
               p(c_17) = [2] x1 + [1]                  
               p(c_18) = [2] x1 + [1] x2 + [1]         
               p(c_19) = [2] x1 + [1]                  
               p(c_20) = [1] x1 + [1] x2 + [1] x3 + [1]
               p(c_21) = [0]                           
               p(c_22) = [1]                           
               p(c_23) = [1]                           
               p(c_24) = [1]                           
               p(c_25) = [2] x1 + [1]                  
               p(c_26) = [1] x1 + [4]                  
               p(c_27) = [1] x1 + [0]                  
        
        Following rules are strictly oriented:
        unquote1#(cons1(X,Z)) = [1] Z + [8]       
                              > [1] Z + [4]       
                              = c_26(unquote1#(Z))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 11.b:3.b:2.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/1,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 11.b:3.b:2.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/1,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
             -->_1 unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: unquote1#(cons1(X,Z)) -> c_26(unquote1#(Z))
***** Step 11.b:3.b:2.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {0/0,activate/1,cons/2,fcons/2,first/2,first1/2,from/1,nil/0,quote/1,quote1/1,s/1,sel/2,sel1/2,unquote/1
            ,unquote1/1,0#/0,activate#/1,cons#/2,fcons#/2,first#/2,first1#/2,from#/1,nil#/0,quote#/1,quote1#/1,s#/1
            ,sel#/2,sel1#/2,unquote#/1,unquote1#/1} / {01/0,cons1/2,n__0/0,n__cons/2,n__first/2,n__from/1,n__nil/0
            ,n__s/1,n__sel/2,nil1/0,s1/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1,c_9/1,c_10/0,c_11/1,c_12/0
            ,c_13/2,c_14/0,c_15/0,c_16/0,c_17/1,c_18/3,c_19/1,c_20/3,c_21/0,c_22/0,c_23/0,c_24/1,c_25/1,c_26/1,c_27/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,cons#,fcons#,first#,first1#,from#,nil#
            ,quote#,quote1#,s#,sel#,sel1#,unquote#,unquote1#} and constructors {01,cons1,n__0,n__cons,n__first,n__from
            ,n__nil,n__s,n__sel,nil1,s1}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

MAYBE