MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: U11(tt(),L) -> U12(tt(),activate(L)) U12(tt(),L) -> s(length(activate(L))) activate(X) -> X activate(n__zeros()) -> zeros() length(cons(N,L)) -> U11(tt(),activate(L)) length(nil()) -> 0() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0} / {0/0,cons/2,n__zeros/0,nil/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U12,activate,length,zeros} and constructors {0,cons ,n__zeros,nil,s,tt} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) activate#(X) -> c_3() activate#(n__zeros()) -> c_4(zeros#()) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) activate#(X) -> c_3() activate#(n__zeros()) -> c_4(zeros#()) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() - Strict TRS: U11(tt(),L) -> U12(tt(),activate(L)) U12(tt(),L) -> s(length(activate(L))) activate(X) -> X activate(n__zeros()) -> zeros() length(cons(N,L)) -> U11(tt(),activate(L)) length(nil()) -> 0() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0,U11#/2,U12#/2,activate#/1,length#/1,zeros#/0} / {0/0,cons/2 ,n__zeros/0,nil/0,s/1,tt/0,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,length#,zeros#} and constructors {0 ,cons,n__zeros,nil,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) activate#(X) -> c_3() activate#(n__zeros()) -> c_4(zeros#()) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() * Step 3: WeightGap MAYBE + Considered Problem: - Strict DPs: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) activate#(X) -> c_3() activate#(n__zeros()) -> c_4(zeros#()) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() - Strict TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0,U11#/2,U12#/2,activate#/1,length#/1,zeros#/0} / {0/0,cons/2 ,n__zeros/0,nil/0,s/1,tt/0,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,length#,zeros#} and constructors {0 ,cons,n__zeros,nil,s,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11#) = {2}, uargs(U12#) = {2}, uargs(length#) = {1}, uargs(c_1) = {1}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(U11) = [1] x1 + [0] p(U12) = [0] p(activate) = [1] x1 + [11] p(cons) = [1] x1 + [1] x2 + [0] p(length) = [0] p(n__zeros) = [0] p(nil) = [0] p(s) = [1] x1 + [0] p(tt) = [0] p(zeros) = [2] p(U11#) = [1] x2 + [0] p(U12#) = [1] x2 + [0] p(activate#) = [0] p(length#) = [1] x1 + [0] p(zeros#) = [0] p(c_1) = [1] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: activate(X) = [1] X + [11] > [1] X + [0] = X activate(n__zeros()) = [11] > [2] = zeros() zeros() = [2] > [0] = cons(0(),n__zeros()) zeros() = [2] > [0] = n__zeros() Following rules are (at-least) weakly oriented: U11#(tt(),L) = [1] L + [0] >= [1] L + [11] = c_1(U12#(tt(),activate(L))) U12#(tt(),L) = [1] L + [0] >= [1] L + [11] = c_2(length#(activate(L))) activate#(X) = [0] >= [0] = c_3() activate#(n__zeros()) = [0] >= [0] = c_4(zeros#()) length#(cons(N,L)) = [1] L + [1] N + [0] >= [1] L + [11] = c_5(U11#(tt(),activate(L))) length#(nil()) = [0] >= [0] = c_6() zeros#() = [0] >= [0] = c_7() zeros#() = [0] >= [0] = c_8() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) activate#(X) -> c_3() activate#(n__zeros()) -> c_4(zeros#()) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0,U11#/2,U12#/2,activate#/1,length#/1,zeros#/0} / {0/0,cons/2 ,n__zeros/0,nil/0,s/1,tt/0,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,length#,zeros#} and constructors {0 ,cons,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,6,7,8} by application of Pre({3,6,7,8}) = {2,4}. Here rules are labelled as follows: 1: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) 2: U12#(tt(),L) -> c_2(length#(activate(L))) 3: activate#(X) -> c_3() 4: activate#(n__zeros()) -> c_4(zeros#()) 5: length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) 6: length#(nil()) -> c_6() 7: zeros#() -> c_7() 8: zeros#() -> c_8() * Step 5: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) activate#(n__zeros()) -> c_4(zeros#()) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) - Weak DPs: activate#(X) -> c_3() length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0,U11#/2,U12#/2,activate#/1,length#/1,zeros#/0} / {0/0,cons/2 ,n__zeros/0,nil/0,s/1,tt/0,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,length#,zeros#} and constructors {0 ,cons,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3} by application of Pre({3}) = {}. Here rules are labelled as follows: 1: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) 2: U12#(tt(),L) -> c_2(length#(activate(L))) 3: activate#(n__zeros()) -> c_4(zeros#()) 4: length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) 5: activate#(X) -> c_3() 6: length#(nil()) -> c_6() 7: zeros#() -> c_7() 8: zeros#() -> c_8() * Step 6: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) - Weak DPs: activate#(X) -> c_3() activate#(n__zeros()) -> c_4(zeros#()) length#(nil()) -> c_6() zeros#() -> c_7() zeros#() -> c_8() - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0,U11#/2,U12#/2,activate#/1,length#/1,zeros#/0} / {0/0,cons/2 ,n__zeros/0,nil/0,s/1,tt/0,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,length#,zeros#} and constructors {0 ,cons,n__zeros,nil,s,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) -->_1 U12#(tt(),L) -> c_2(length#(activate(L))):2 2:S:U12#(tt(),L) -> c_2(length#(activate(L))) -->_1 length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))):3 -->_1 length#(nil()) -> c_6():6 3:S:length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) -->_1 U11#(tt(),L) -> c_1(U12#(tt(),activate(L))):1 4:W:activate#(X) -> c_3() 5:W:activate#(n__zeros()) -> c_4(zeros#()) -->_1 zeros#() -> c_8():8 -->_1 zeros#() -> c_7():7 6:W:length#(nil()) -> c_6() 7:W:zeros#() -> c_7() 8:W:zeros#() -> c_8() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: activate#(n__zeros()) -> c_4(zeros#()) 7: zeros#() -> c_7() 8: zeros#() -> c_8() 4: activate#(X) -> c_3() 6: length#(nil()) -> c_6() * Step 7: Failure MAYBE + Considered Problem: - Strict DPs: U11#(tt(),L) -> c_1(U12#(tt(),activate(L))) U12#(tt(),L) -> c_2(length#(activate(L))) length#(cons(N,L)) -> c_5(U11#(tt(),activate(L))) - Weak TRS: activate(X) -> X activate(n__zeros()) -> zeros() zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {U11/2,U12/2,activate/1,length/1,zeros/0,U11#/2,U12#/2,activate#/1,length#/1,zeros#/0} / {0/0,cons/2 ,n__zeros/0,nil/0,s/1,tt/0,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11#,U12#,activate#,length#,zeros#} and constructors {0 ,cons,n__zeros,nil,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE