MAYBE
* Step 1: DependencyPairs MAYBE
    + Considered Problem:
        - Strict TRS:
            U11(tt(),L) -> U12(tt(),activate(L))
            U12(tt(),L) -> s(length(activate(L)))
            U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
            U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
            U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            length(cons(N,L)) -> U11(tt(),activate(L))
            length(nil()) -> 0()
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> nil()
            take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {U11/2,U12/2,U21/4,U22/4,U23/4,activate/1,length/1,take/2,zeros/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0
            ,s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {U11,U12,U21,U22,U23,activate,length,take
            ,zeros} and constructors {0,cons,n__take,n__zeros,nil,s,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
          U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
          U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                  ,activate#(IL)
                                  ,activate#(M)
                                  ,activate#(N))
          U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                  ,activate#(IL)
                                  ,activate#(M)
                                  ,activate#(N))
          U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
          activate#(X) -> c_6()
          activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          activate#(n__zeros()) -> c_8(zeros#())
          length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
          length#(nil()) -> c_10()
          take#(X1,X2) -> c_11()
          take#(0(),IL) -> c_12()
          take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
          zeros#() -> c_14()
          zeros#() -> c_15()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
            U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
            U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
            activate#(X) -> c_6()
            activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__zeros()) -> c_8(zeros#())
            length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
            length#(nil()) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),IL) -> c_12()
            take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
            zeros#() -> c_14()
            zeros#() -> c_15()
        - Weak TRS:
            U11(tt(),L) -> U12(tt(),activate(L))
            U12(tt(),L) -> s(length(activate(L)))
            U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
            U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
            U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            length(cons(N,L)) -> U11(tt(),activate(L))
            length(nil()) -> 0()
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> nil()
            take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {U11/2,U12/2,U21/4,U22/4,U23/4,activate/1,length/1,take/2,zeros/0,U11#/2,U12#/2,U21#/4,U22#/4,U23#/4
            ,activate#/1,length#/1,take#/2,zeros#/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/2,c_2/2,c_3/4
            ,c_4/4,c_5/3,c_6/0,c_7/3,c_8/1,c_9/2,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {U11#,U12#,U21#,U22#,U23#,activate#,length#,take#
            ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
          U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
          U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
          activate(X) -> X
          activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
          activate(n__zeros()) -> zeros()
          take(X1,X2) -> n__take(X1,X2)
          take(0(),IL) -> nil()
          take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
          zeros() -> cons(0(),n__zeros())
          zeros() -> n__zeros()
          U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
          U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
          U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                  ,activate#(IL)
                                  ,activate#(M)
                                  ,activate#(N))
          U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                  ,activate#(IL)
                                  ,activate#(M)
                                  ,activate#(N))
          U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
          activate#(X) -> c_6()
          activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          activate#(n__zeros()) -> c_8(zeros#())
          length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
          length#(nil()) -> c_10()
          take#(X1,X2) -> c_11()
          take#(0(),IL) -> c_12()
          take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
          zeros#() -> c_14()
          zeros#() -> c_15()
* Step 3: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
            U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
            U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
            activate#(X) -> c_6()
            activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__zeros()) -> c_8(zeros#())
            length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
            length#(nil()) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),IL) -> c_12()
            take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
            zeros#() -> c_14()
            zeros#() -> c_15()
        - Weak TRS:
            U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
            U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
            U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> nil()
            take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {U11/2,U12/2,U21/4,U22/4,U23/4,activate/1,length/1,take/2,zeros/0,U11#/2,U12#/2,U21#/4,U22#/4,U23#/4
            ,activate#/1,length#/1,take#/2,zeros#/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/2,c_2/2,c_3/4
            ,c_4/4,c_5/3,c_6/0,c_7/3,c_8/1,c_9/2,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {U11#,U12#,U21#,U22#,U23#,activate#,length#,take#
            ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {6,10,11,12,14,15}
        by application of
          Pre({6,10,11,12,14,15}) = {1,2,3,4,5,7,8,9,13}.
        Here rules are labelled as follows:
          1: U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
          2: U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
          3: U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                     ,activate#(IL)
                                     ,activate#(M)
                                     ,activate#(N))
          4: U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                     ,activate#(IL)
                                     ,activate#(M)
                                     ,activate#(N))
          5: U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
          6: activate#(X) -> c_6()
          7: activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          8: activate#(n__zeros()) -> c_8(zeros#())
          9: length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
          10: length#(nil()) -> c_10()
          11: take#(X1,X2) -> c_11()
          12: take#(0(),IL) -> c_12()
          13: take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
          14: zeros#() -> c_14()
          15: zeros#() -> c_15()
* Step 4: PredecessorEstimation MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
            U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
            U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
            activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__zeros()) -> c_8(zeros#())
            length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
            take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
        - Weak DPs:
            activate#(X) -> c_6()
            length#(nil()) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),IL) -> c_12()
            zeros#() -> c_14()
            zeros#() -> c_15()
        - Weak TRS:
            U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
            U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
            U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> nil()
            take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {U11/2,U12/2,U21/4,U22/4,U23/4,activate/1,length/1,take/2,zeros/0,U11#/2,U12#/2,U21#/4,U22#/4,U23#/4
            ,activate#/1,length#/1,take#/2,zeros#/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/2,c_2/2,c_3/4
            ,c_4/4,c_5/3,c_6/0,c_7/3,c_8/1,c_9/2,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {U11#,U12#,U21#,U22#,U23#,activate#,length#,take#
            ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {7}
        by application of
          Pre({7}) = {1,2,3,4,5,6,8,9}.
        Here rules are labelled as follows:
          1: U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
          2: U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
          3: U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                     ,activate#(IL)
                                     ,activate#(M)
                                     ,activate#(N))
          4: U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                     ,activate#(IL)
                                     ,activate#(M)
                                     ,activate#(N))
          5: U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
          6: activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          7: activate#(n__zeros()) -> c_8(zeros#())
          8: length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
          9: take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
          10: activate#(X) -> c_6()
          11: length#(nil()) -> c_10()
          12: take#(X1,X2) -> c_11()
          13: take#(0(),IL) -> c_12()
          14: zeros#() -> c_14()
          15: zeros#() -> c_15()
* Step 5: RemoveWeakSuffixes MAYBE
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
            U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
            U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                    ,activate#(IL)
                                    ,activate#(M)
                                    ,activate#(N))
            U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
            activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
            take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
        - Weak DPs:
            activate#(X) -> c_6()
            activate#(n__zeros()) -> c_8(zeros#())
            length#(nil()) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),IL) -> c_12()
            zeros#() -> c_14()
            zeros#() -> c_15()
        - Weak TRS:
            U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
            U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
            U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> nil()
            take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {U11/2,U12/2,U21/4,U22/4,U23/4,activate/1,length/1,take/2,zeros/0,U11#/2,U12#/2,U21#/4,U22#/4,U23#/4
            ,activate#/1,length#/1,take#/2,zeros#/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/2,c_2/2,c_3/4
            ,c_4/4,c_5/3,c_6/0,c_7/3,c_8/1,c_9/2,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {U11#,U12#,U21#,U22#,U23#,activate#,length#,take#
            ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L)):2
             -->_2 activate#(X) -> c_6():9
          
          2:S:U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_1 length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L)):7
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 length#(nil()) -> c_10():11
             -->_2 activate#(X) -> c_6():9
          
          3:S:U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                      ,activate#(IL)
                                      ,activate#(M)
                                      ,activate#(N))
             -->_4 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_3 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_4 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_3 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                           ,activate#(IL)
                                           ,activate#(M)
                                           ,activate#(N)):4
             -->_4 activate#(X) -> c_6():9
             -->_3 activate#(X) -> c_6():9
             -->_2 activate#(X) -> c_6():9
          
          4:S:U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                      ,activate#(IL)
                                      ,activate#(M)
                                      ,activate#(N))
             -->_4 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_3 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_4 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_3 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL)):5
             -->_4 activate#(X) -> c_6():9
             -->_3 activate#(X) -> c_6():9
             -->_2 activate#(X) -> c_6():9
          
          5:S:U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
             -->_3 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_1 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_3 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_3 activate#(X) -> c_6():9
             -->_2 activate#(X) -> c_6():9
             -->_1 activate#(X) -> c_6():9
          
          6:S:activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_1 take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL)):8
             -->_1 take#(0(),IL) -> c_12():13
             -->_1 take#(X1,X2) -> c_11():12
             -->_3 activate#(X) -> c_6():9
             -->_2 activate#(X) -> c_6():9
             -->_3 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
          
          7:S:length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(X) -> c_6():9
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L)):1
          
          8:S:take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
             -->_2 activate#(n__zeros()) -> c_8(zeros#()):10
             -->_2 activate#(X) -> c_6():9
             -->_2 activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):6
             -->_1 U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                           ,activate#(IL)
                                           ,activate#(M)
                                           ,activate#(N)):3
          
          9:W:activate#(X) -> c_6()
             
          
          10:W:activate#(n__zeros()) -> c_8(zeros#())
             -->_1 zeros#() -> c_15():15
             -->_1 zeros#() -> c_14():14
          
          11:W:length#(nil()) -> c_10()
             
          
          12:W:take#(X1,X2) -> c_11()
             
          
          13:W:take#(0(),IL) -> c_12()
             
          
          14:W:zeros#() -> c_14()
             
          
          15:W:zeros#() -> c_15()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          11: length#(nil()) -> c_10()
          12: take#(X1,X2) -> c_11()
          13: take#(0(),IL) -> c_12()
          9: activate#(X) -> c_6()
          10: activate#(n__zeros()) -> c_8(zeros#())
          14: zeros#() -> c_14()
          15: zeros#() -> c_15()
* Step 6: Failure MAYBE
  + Considered Problem:
      - Strict DPs:
          U11#(tt(),L) -> c_1(U12#(tt(),activate(L)),activate#(L))
          U12#(tt(),L) -> c_2(length#(activate(L)),activate#(L))
          U21#(tt(),IL,M,N) -> c_3(U22#(tt(),activate(IL),activate(M),activate(N))
                                  ,activate#(IL)
                                  ,activate#(M)
                                  ,activate#(N))
          U22#(tt(),IL,M,N) -> c_4(U23#(tt(),activate(IL),activate(M),activate(N))
                                  ,activate#(IL)
                                  ,activate#(M)
                                  ,activate#(N))
          U23#(tt(),IL,M,N) -> c_5(activate#(N),activate#(M),activate#(IL))
          activate#(n__take(X1,X2)) -> c_7(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          length#(cons(N,L)) -> c_9(U11#(tt(),activate(L)),activate#(L))
          take#(s(M),cons(N,IL)) -> c_13(U21#(tt(),activate(IL),M,N),activate#(IL))
      - Weak TRS:
          U21(tt(),IL,M,N) -> U22(tt(),activate(IL),activate(M),activate(N))
          U22(tt(),IL,M,N) -> U23(tt(),activate(IL),activate(M),activate(N))
          U23(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
          activate(X) -> X
          activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
          activate(n__zeros()) -> zeros()
          take(X1,X2) -> n__take(X1,X2)
          take(0(),IL) -> nil()
          take(s(M),cons(N,IL)) -> U21(tt(),activate(IL),M,N)
          zeros() -> cons(0(),n__zeros())
          zeros() -> n__zeros()
      - Signature:
          {U11/2,U12/2,U21/4,U22/4,U23/4,activate/1,length/1,take/2,zeros/0,U11#/2,U12#/2,U21#/4,U22#/4,U23#/4
          ,activate#/1,length#/1,take#/2,zeros#/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/2,c_2/2,c_3/4
          ,c_4/4,c_5/3,c_6/0,c_7/3,c_8/1,c_9/2,c_10/0,c_11/0,c_12/0,c_13/2,c_14/0,c_15/0}
      - Obligation:
          innermost runtime complexity wrt. defined symbols {U11#,U12#,U21#,U22#,U23#,activate#,length#,take#
          ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt}
  + Applied Processor:
      EmptyProcessor
  + Details:
      The problem is still open.
MAYBE