MAYBE * Step 1: DependencyPairs MAYBE + Considered Problem: - Strict TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() and(tt(),X) -> activate(X) length(cons(N,L)) -> s(length(activate(L))) length(nil()) -> 0() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0} / {0/0,cons/2,n__take/2,n__zeros/0,nil/0,s/1,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate,and,length,take,zeros} and constructors {0,cons ,n__take,n__zeros,nil,s,tt} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__zeros()) -> c_3(zeros#()) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) length#(nil()) -> c_6() take#(X1,X2) -> c_7() take#(0(),IL) -> c_8() take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) zeros#() -> c_10() zeros#() -> c_11() Weak DPs and mark the set of starting terms. * Step 2: UsableRules MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__zeros()) -> c_3(zeros#()) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) length#(nil()) -> c_6() take#(X1,X2) -> c_7() take#(0(),IL) -> c_8() take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) zeros#() -> c_10() zeros#() -> c_11() - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() and(tt(),X) -> activate(X) length(cons(N,L)) -> s(length(activate(L))) length(nil()) -> 0() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() activate#(X) -> c_1() activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__zeros()) -> c_3(zeros#()) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) length#(nil()) -> c_6() take#(X1,X2) -> c_7() take#(0(),IL) -> c_8() take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) zeros#() -> c_10() zeros#() -> c_11() * Step 3: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__zeros()) -> c_3(zeros#()) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) length#(nil()) -> c_6() take#(X1,X2) -> c_7() take#(0(),IL) -> c_8() take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) zeros#() -> c_10() zeros#() -> c_11() - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,6,7,8,10,11} by application of Pre({1,6,7,8,10,11}) = {2,3,4,5,9}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) 3: activate#(n__zeros()) -> c_3(zeros#()) 4: and#(tt(),X) -> c_4(activate#(X)) 5: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) 6: length#(nil()) -> c_6() 7: take#(X1,X2) -> c_7() 8: take#(0(),IL) -> c_8() 9: take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) 10: zeros#() -> c_10() 11: zeros#() -> c_11() * Step 4: PredecessorEstimation MAYBE + Considered Problem: - Strict DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) activate#(n__zeros()) -> c_3(zeros#()) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak DPs: activate#(X) -> c_1() length#(nil()) -> c_6() take#(X1,X2) -> c_7() take#(0(),IL) -> c_8() zeros#() -> c_10() zeros#() -> c_11() - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {2} by application of Pre({2}) = {1,3,4,5}. Here rules are labelled as follows: 1: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) 2: activate#(n__zeros()) -> c_3(zeros#()) 3: and#(tt(),X) -> c_4(activate#(X)) 4: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) 5: take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) 6: activate#(X) -> c_1() 7: length#(nil()) -> c_6() 8: take#(X1,X2) -> c_7() 9: take#(0(),IL) -> c_8() 10: zeros#() -> c_10() 11: zeros#() -> c_11() * Step 5: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak DPs: activate#(X) -> c_1() activate#(n__zeros()) -> c_3(zeros#()) length#(nil()) -> c_6() take#(X1,X2) -> c_7() take#(0(),IL) -> c_8() zeros#() -> c_10() zeros#() -> c_11() - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_3 activate#(n__zeros()) -> c_3(zeros#()):6 -->_2 activate#(n__zeros()) -> c_3(zeros#()):6 -->_1 take#(s(M),cons(N,IL)) -> c_9(activate#(IL)):4 -->_1 take#(0(),IL) -> c_8():9 -->_1 take#(X1,X2) -> c_7():8 -->_3 activate#(X) -> c_1():5 -->_2 activate#(X) -> c_1():5 -->_3 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 -->_2 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 2:S:and#(tt(),X) -> c_4(activate#(X)) -->_1 activate#(n__zeros()) -> c_3(zeros#()):6 -->_1 activate#(X) -> c_1():5 -->_1 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 3:S:length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) -->_2 activate#(n__zeros()) -> c_3(zeros#()):6 -->_1 length#(nil()) -> c_6():7 -->_2 activate#(X) -> c_1():5 -->_1 length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)):3 -->_2 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 4:S:take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) -->_1 activate#(n__zeros()) -> c_3(zeros#()):6 -->_1 activate#(X) -> c_1():5 -->_1 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 5:W:activate#(X) -> c_1() 6:W:activate#(n__zeros()) -> c_3(zeros#()) -->_1 zeros#() -> c_11():11 -->_1 zeros#() -> c_10():10 7:W:length#(nil()) -> c_6() 8:W:take#(X1,X2) -> c_7() 9:W:take#(0(),IL) -> c_8() 10:W:zeros#() -> c_10() 11:W:zeros#() -> c_11() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: length#(nil()) -> c_6() 8: take#(X1,X2) -> c_7() 9: take#(0(),IL) -> c_8() 5: activate#(X) -> c_1() 6: activate#(n__zeros()) -> c_3(zeros#()) 10: zeros#() -> c_10() 11: zeros#() -> c_11() * Step 6: RemoveHeads MAYBE + Considered Problem: - Strict DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) and#(tt(),X) -> c_4(activate#(X)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: RemoveHeads + Details: Consider the dependency graph 1:S:activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_1 take#(s(M),cons(N,IL)) -> c_9(activate#(IL)):4 -->_3 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 -->_2 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 2:S:and#(tt(),X) -> c_4(activate#(X)) -->_1 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 3:S:length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) -->_1 length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)):3 -->_2 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 4:S:take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) -->_1 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):1 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). [(2,and#(tt(),X) -> c_4(activate#(X)))] * Step 7: Decompose MAYBE + Considered Problem: - Strict DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak DPs: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take# ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt} Problem (S) - Strict DPs: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) - Weak DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take# ,zeros#} and constructors {0,cons,n__take,n__zeros,nil,s,tt} ** Step 7.a:1: Failure MAYBE + Considered Problem: - Strict DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak DPs: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is still open. ** Step 7.b:1: RemoveWeakSuffixes MAYBE + Considered Problem: - Strict DPs: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) - Weak DPs: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) -->_2 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_1 length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)):1 2:W:activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) -->_1 take#(s(M),cons(N,IL)) -> c_9(activate#(IL)):3 -->_3 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 -->_2 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 3:W:take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) -->_1 activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: activate#(n__take(X1,X2)) -> c_2(take#(activate(X1),activate(X2)),activate#(X1),activate#(X2)) 3: take#(s(M),cons(N,IL)) -> c_9(activate#(IL)) ** Step 7.b:2: SimplifyRHS MAYBE + Considered Problem: - Strict DPs: length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)) -->_1 length#(cons(N,L)) -> c_5(length#(activate(L)),activate#(L)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: length#(cons(N,L)) -> c_5(length#(activate(L))) ** Step 7.b:3: Failure MAYBE + Considered Problem: - Strict DPs: length#(cons(N,L)) -> c_5(length#(activate(L))) - Weak TRS: activate(X) -> X activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> nil() take(s(M),cons(N,IL)) -> cons(N,n__take(M,activate(IL))) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {activate/1,and/2,length/1,take/2,zeros/0,activate#/1,and#/2,length#/1,take#/2,zeros#/0} / {0/0,cons/2 ,n__take/2,n__zeros/0,nil/0,s/1,tt/0,c_1/0,c_2/3,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0,c_9/1,c_10/0,c_11/0} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,and#,length#,take#,zeros#} and constructors {0 ,cons,n__take,n__zeros,nil,s,tt} + Applied Processor: EmptyProcessor + Details: The problem is still open. MAYBE