WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            goal(x) -> list(x)
            list(Cons(x,xs)) -> list(xs)
            list(Nil()) -> True()
            list(Nil()) -> isEmpty[Match](Nil())
            notEmpty(Cons(x,xs)) -> True()
            notEmpty(Nil()) -> False()
        - Signature:
            {goal/1,list/1,notEmpty/1} / {Cons/2,False/0,Nil/0,True/0,isEmpty[Match]/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {goal,list,notEmpty} and constructors {Cons,False,Nil,True
            ,isEmpty[Match]}
    + Applied Processor:
        Ara {minDegree = 1, maxDegree = 2, araTimeout = 3, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          F (TrsFun "Cons") :: ["A"(0) x "A"(15)] -(15)-> "A"(15)
          F (TrsFun "Cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          F (TrsFun "False") :: [] -(0)-> "A"(14)
          F (TrsFun "Nil") :: [] -(0)-> "A"(15)
          F (TrsFun "Nil") :: [] -(0)-> "A"(0)
          F (TrsFun "Nil") :: [] -(0)-> "A"(14)
          F (TrsFun "True") :: [] -(0)-> "A"(14)
          F (TrsFun "goal") :: ["A"(15)] -(16)-> "A"(0)
          F (TrsFun "isEmpty[Match]") :: ["A"(0)] -(0)-> "A"(14)
          F (TrsFun "list") :: ["A"(15)] -(15)-> "A"(0)
          F (TrsFun "notEmpty") :: ["A"(0)] -(7)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "F (TrsFun \"Cons\")_A" :: ["A"(0) x "A"(1)] -(1)-> "A"(1)
          "F (TrsFun \"False\")_A" :: [] -(0)-> "A"(1)
          "F (TrsFun \"Nil\")_A" :: [] -(0)-> "A"(1)
          "F (TrsFun \"True\")_A" :: [] -(0)-> "A"(1)
          "F (TrsFun \"isEmpty[Match]\")_A" :: ["A"(0)] -(0)-> "A"(1)
        

WORST_CASE(?,O(n^1))