WORST_CASE(?,O(n^2))
* Step 1: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        Ara {minDegree = 1, maxDegree = 1, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          F (TrsFun "Cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          F (TrsFun "Nil") :: [] -(0)-> "A"(0)
          F (TrsFun "revapp") :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          F (TrsFun "select") :: ["A"(0)] -(2)-> "A"(0)
          F (TrsFun "selects") :: ["A"(0) x "A"(0) x "A"(0)] -(1)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
        
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          select(Cons(x,xs)) -> selects(x,Nil(),xs)
          select(Nil()) -> Nil()
          selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
        2. Weak:
          revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
          revapp(Nil(),rest) -> rest
          selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                  ,selects(x,Cons(x',revprefix),xs))
* Step 2: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Weak TRS:
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        Ara {minDegree = 1, maxDegree = 1, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          F (TrsFun "Cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          F (TrsFun "Cons") :: ["A"(15) x "A"(15)] -(15)-> "A"(15)
          F (TrsFun "Nil") :: [] -(0)-> "A"(0)
          F (TrsFun "Nil") :: [] -(0)-> "A"(15)
          F (TrsFun "Nil") :: [] -(0)-> "A"(7)
          F (TrsFun "revapp") :: ["A"(0) x "A"(0)] -(15)-> "A"(0)
          F (TrsFun "select") :: ["A"(15)] -(12)-> "A"(0)
          F (TrsFun "selects") :: ["A"(8) x "A"(0) x "A"(15)] -(15)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "F (TrsFun \"Cons\")_A" :: ["A"(1) x "A"(1)] -(1)-> "A"(1)
          "F (TrsFun \"Nil\")_A" :: [] -(0)-> "A"(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          revapp(Nil(),rest) -> rest
        2. Weak:
          revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
          selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                  ,selects(x,Cons(x',revprefix),xs))
* Step 3: Ara WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Weak TRS:
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        Ara {minDegree = 1, maxDegree = 1, araTimeout = 8, araRuleShifting = Just 1}
    + Details:
        Signatures used:
        ----------------
          F (TrsFun "Cons") :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          F (TrsFun "Cons") :: ["A"(0) x "A"(8)] -(8)-> "A"(8)
          F (TrsFun "Cons") :: ["A"(0) x "A"(1)] -(1)-> "A"(1)
          F (TrsFun "Cons") :: ["A"(0) x "A"(4)] -(4)-> "A"(4)
          F (TrsFun "Nil") :: [] -(0)-> "A"(0)
          F (TrsFun "Nil") :: [] -(0)-> "A"(8)
          F (TrsFun "Nil") :: [] -(0)-> "A"(15)
          F (TrsFun "Nil") :: [] -(0)-> "A"(14)
          F (TrsFun "Nil") :: [] -(0)-> "A"(6)
          F (TrsFun "revapp") :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          F (TrsFun "select") :: ["A"(8)] -(6)-> "A"(1)
          F (TrsFun "selects") :: ["A"(0) x "A"(0) x "A"(8)] -(9)-> "A"(1)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "F (TrsFun \"Cons\")_A" :: ["A"(0) x "A"(1)] -(1)-> "A"(1)
          "F (TrsFun \"Nil\")_A" :: [] -(0)-> "A"(1)
        
        
        Following Still Strict Rules were Typed as:
        -------------------------------------------
        1. Strict:
          selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                  ,selects(x,Cons(x',revprefix),xs))
        2. Weak:
          revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
* Step 4: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
        - Weak TRS:
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(Cons) = {1,2}
        
        Following symbols are considered usable:
          {revapp,select,selects}
        TcT has computed the following interpretation:
             p(Cons) = 2 + x1 + x2                   
              p(Nil) = 2                             
           p(revapp) = 6 + 4*x1 + x2                 
           p(select) = 3*x1^2                        
          p(selects) = 3 + 4*x1*x3 + 4*x2*x3 + 3*x3^2
        
        Following rules are strictly oriented:
        revapp(Cons(x,xs),rest) = 14 + rest + 4*x + 4*xs 
                                > 8 + rest + x + 4*xs    
                                = revapp(xs,Cons(x,rest))
        
        
        Following rules are (at-least) weakly oriented:
                      revapp(Nil(),rest) =  14 + rest                                                                                                           
                                         >= rest                                                                                                                
                                         =  rest                                                                                                                
        
                      select(Cons(x,xs)) =  12 + 12*x + 6*x*xs + 3*x^2 + 12*xs + 3*xs^2                                                                         
                                         >= 3 + 4*x*xs + 8*xs + 3*xs^2                                                                                          
                                         =  selects(x,Nil(),xs)                                                                                                 
        
                           select(Nil()) =  12                                                                                                                  
                                         >= 2                                                                                                                   
                                         =  Nil()                                                                                                               
        
              selects(x,revprefix,Nil()) =  15 + 8*revprefix + 8*x                                                                                              
                                         >= 14 + 4*revprefix + x                                                                                                
                                         =  Cons(Cons(x,revapp(revprefix,Nil())),Nil())                                                                         
        
        selects(x',revprefix,Cons(x,xs)) =  15 + 8*revprefix + 4*revprefix*x + 4*revprefix*xs + 12*x + 4*x*x' + 6*x*xs + 3*x^2 + 8*x' + 4*x'*xs + 12*xs + 3*xs^2
                                         >= 15 + 4*revprefix + 4*revprefix*xs + x + 4*x*xs + x' + 4*x'*xs + 9*xs + 3*xs^2                                       
                                         =  Cons(Cons(x',revapp(revprefix,Cons(x,xs))),selects(x,Cons(x',revprefix),xs))                                        
        
* Step 5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            revapp(Cons(x,xs),rest) -> revapp(xs,Cons(x,rest))
            revapp(Nil(),rest) -> rest
            select(Cons(x,xs)) -> selects(x,Nil(),xs)
            select(Nil()) -> Nil()
            selects(x,revprefix,Nil()) -> Cons(Cons(x,revapp(revprefix,Nil())),Nil())
            selects(x',revprefix,Cons(x,xs)) -> Cons(Cons(x',revapp(revprefix,Cons(x,xs)))
                                                    ,selects(x,Cons(x',revprefix),xs))
        - Signature:
            {revapp/2,select/1,selects/3} / {Cons/2,Nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {revapp,select,selects} and constructors {Cons,Nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))