WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            findMin#1(E()) -> ErrorElem()
            findMin#1(T(E(),x6,x17)) -> x6
            findMin#1(T(T(x10,x12,x14),x6,x17)) -> findMin#1(T(x10,x12,x14))
            main(x0) -> findMin#1(x0)
        - Signature:
            {findMin#1/1,main/1} / {E/0,ErrorElem/0,T/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {findMin#1,main} and constructors {E,ErrorElem,T}
    + Applied Processor:
        Ara {minDegree = 1, maxDegree = 2, araTimeout = 3, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          F (TrsFun "E") :: [] -(0)-> "A"(5)
          F (TrsFun "ErrorElem") :: [] -(0)-> "A"(7)
          F (TrsFun "T") :: ["A"(5) x "A"(0) x "A"(0)] -(5)-> "A"(5)
          F (TrsFun "findMin#1") :: ["A"(5)] -(6)-> "A"(0)
          F (TrsFun "main") :: ["A"(11)] -(11)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
          "F (TrsFun \"E\")_A" :: [] -(0)-> "A"(1)
          "F (TrsFun \"ErrorElem\")_A" :: [] -(0)-> "A"(1)
          "F (TrsFun \"T\")_A" :: ["A"(1) x "A"(0) x "A"(0)] -(1)-> "A"(1)
        

WORST_CASE(?,O(n^1))