WORST_CASE(?,O(n^1))
* Step 1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            add#2(x2,Nil()) -> x2
            add#2(Cons(x6,x4),Cons(Zero(),x2)) -> Cons(x6,add#2(x4,x2))
            add#2(Cons(One(),x4),Cons(One(),x2)) -> Cons(Zero(),inc#1(add#2(x4,x2)))
            add#2(Cons(Zero(),x4),Cons(One(),x2)) -> Cons(One(),add#2(x4,x2))
            add#2(Nil(),Cons(x4,x2)) -> Cons(x4,x2)
            inc#1(Cons(One(),x8)) -> Cons(Zero(),inc#1(x8))
            inc#1(Cons(Zero(),x8)) -> Cons(One(),x8)
            inc#1(Nil()) -> Cons(One(),Nil())
            main(x2,x1) -> add#2(x2,x1)
        - Signature:
            {add#2/2,inc#1/1,main/2} / {Cons/2,Nil/0,One/0,Zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#2,inc#1,main} and constructors {Cons,Nil,One,Zero}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(inc#1) = {1}
        
        Following symbols are considered usable:
          {add#2,inc#1,main}
        TcT has computed the following interpretation:
           p(Cons) = x2           
            p(Nil) = 0            
            p(One) = 0            
           p(Zero) = 0            
          p(add#2) = 4 + 4*x1 + x2
          p(inc#1) = x1           
           p(main) = 4 + 4*x1 + x2
        
        Following rules are strictly oriented:
                 add#2(x2,Nil()) = 4 + 4*x2   
                                 > x2         
                                 = x2         
        
        add#2(Nil(),Cons(x4,x2)) = 4 + x2     
                                 > x2         
                                 = Cons(x4,x2)
        
        
        Following rules are (at-least) weakly oriented:
           add#2(Cons(x6,x4),Cons(Zero(),x2)) =  4 + x2 + 4*x4                   
                                              >= 4 + x2 + 4*x4                   
                                              =  Cons(x6,add#2(x4,x2))           
        
         add#2(Cons(One(),x4),Cons(One(),x2)) =  4 + x2 + 4*x4                   
                                              >= 4 + x2 + 4*x4                   
                                              =  Cons(Zero(),inc#1(add#2(x4,x2)))
        
        add#2(Cons(Zero(),x4),Cons(One(),x2)) =  4 + x2 + 4*x4                   
                                              >= 4 + x2 + 4*x4                   
                                              =  Cons(One(),add#2(x4,x2))        
        
                        inc#1(Cons(One(),x8)) =  x8                              
                                              >= x8                              
                                              =  Cons(Zero(),inc#1(x8))          
        
                       inc#1(Cons(Zero(),x8)) =  x8                              
                                              >= x8                              
                                              =  Cons(One(),x8)                  
        
                                 inc#1(Nil()) =  0                               
                                              >= 0                               
                                              =  Cons(One(),Nil())               
        
                                  main(x2,x1) =  4 + x1 + 4*x2                   
                                              >= 4 + x1 + 4*x2                   
                                              =  add#2(x2,x1)                    
        
* Step 2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            add#2(Cons(x6,x4),Cons(Zero(),x2)) -> Cons(x6,add#2(x4,x2))
            add#2(Cons(One(),x4),Cons(One(),x2)) -> Cons(Zero(),inc#1(add#2(x4,x2)))
            add#2(Cons(Zero(),x4),Cons(One(),x2)) -> Cons(One(),add#2(x4,x2))
            inc#1(Cons(One(),x8)) -> Cons(Zero(),inc#1(x8))
            inc#1(Cons(Zero(),x8)) -> Cons(One(),x8)
            inc#1(Nil()) -> Cons(One(),Nil())
            main(x2,x1) -> add#2(x2,x1)
        - Weak TRS:
            add#2(x2,Nil()) -> x2
            add#2(Nil(),Cons(x4,x2)) -> Cons(x4,x2)
        - Signature:
            {add#2/2,inc#1/1,main/2} / {Cons/2,Nil/0,One/0,Zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#2,inc#1,main} and constructors {Cons,Nil,One,Zero}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(inc#1) = {1}
        
        Following symbols are considered usable:
          {add#2,inc#1,main}
        TcT has computed the following interpretation:
           p(Cons) = [1] x2 + [4]         
            p(Nil) = [0]                  
            p(One) = [1]                  
           p(Zero) = [0]                  
          p(add#2) = [3] x1 + [1] x2 + [0]
          p(inc#1) = [1] x1 + [4]         
           p(main) = [3] x1 + [1] x2 + [2]
        
        Following rules are strictly oriented:
           add#2(Cons(x6,x4),Cons(Zero(),x2)) = [1] x2 + [3] x4 + [16]          
                                              > [1] x2 + [3] x4 + [4]           
                                              = Cons(x6,add#2(x4,x2))           
        
         add#2(Cons(One(),x4),Cons(One(),x2)) = [1] x2 + [3] x4 + [16]          
                                              > [1] x2 + [3] x4 + [8]           
                                              = Cons(Zero(),inc#1(add#2(x4,x2)))
        
        add#2(Cons(Zero(),x4),Cons(One(),x2)) = [1] x2 + [3] x4 + [16]          
                                              > [1] x2 + [3] x4 + [4]           
                                              = Cons(One(),add#2(x4,x2))        
        
                       inc#1(Cons(Zero(),x8)) = [1] x8 + [8]                    
                                              > [1] x8 + [4]                    
                                              = Cons(One(),x8)                  
        
                                  main(x2,x1) = [1] x1 + [3] x2 + [2]           
                                              > [1] x1 + [3] x2 + [0]           
                                              = add#2(x2,x1)                    
        
        
        Following rules are (at-least) weakly oriented:
                 add#2(x2,Nil()) =  [3] x2 + [0]          
                                 >= [1] x2 + [0]          
                                 =  x2                    
        
        add#2(Nil(),Cons(x4,x2)) =  [1] x2 + [4]          
                                 >= [1] x2 + [4]          
                                 =  Cons(x4,x2)           
        
           inc#1(Cons(One(),x8)) =  [1] x8 + [8]          
                                 >= [1] x8 + [8]          
                                 =  Cons(Zero(),inc#1(x8))
        
                    inc#1(Nil()) =  [4]                   
                                 >= [4]                   
                                 =  Cons(One(),Nil())     
        
* Step 3: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            inc#1(Cons(One(),x8)) -> Cons(Zero(),inc#1(x8))
            inc#1(Nil()) -> Cons(One(),Nil())
        - Weak TRS:
            add#2(x2,Nil()) -> x2
            add#2(Cons(x6,x4),Cons(Zero(),x2)) -> Cons(x6,add#2(x4,x2))
            add#2(Cons(One(),x4),Cons(One(),x2)) -> Cons(Zero(),inc#1(add#2(x4,x2)))
            add#2(Cons(Zero(),x4),Cons(One(),x2)) -> Cons(One(),add#2(x4,x2))
            add#2(Nil(),Cons(x4,x2)) -> Cons(x4,x2)
            inc#1(Cons(Zero(),x8)) -> Cons(One(),x8)
            main(x2,x1) -> add#2(x2,x1)
        - Signature:
            {add#2/2,inc#1/1,main/2} / {Cons/2,Nil/0,One/0,Zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#2,inc#1,main} and constructors {Cons,Nil,One,Zero}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(inc#1) = {1}
        
        Following symbols are considered usable:
          {add#2,inc#1,main}
        TcT has computed the following interpretation:
           p(Cons) = x1 + x2      
            p(Nil) = 2            
            p(One) = 2            
           p(Zero) = 1            
          p(add#2) = 4 + 4*x1 + x2
          p(inc#1) = 4 + x1       
           p(main) = 6 + 4*x1 + x2
        
        Following rules are strictly oriented:
        inc#1(Cons(One(),x8)) = 6 + x8                
                              > 5 + x8                
                              = Cons(Zero(),inc#1(x8))
        
                 inc#1(Nil()) = 6                     
                              > 4                     
                              = Cons(One(),Nil())     
        
        
        Following rules are (at-least) weakly oriented:
                              add#2(x2,Nil()) =  6 + 4*x2                        
                                              >= x2                              
                                              =  x2                              
        
           add#2(Cons(x6,x4),Cons(Zero(),x2)) =  5 + x2 + 4*x4 + 4*x6            
                                              >= 4 + x2 + 4*x4 + x6              
                                              =  Cons(x6,add#2(x4,x2))           
        
         add#2(Cons(One(),x4),Cons(One(),x2)) =  14 + x2 + 4*x4                  
                                              >= 9 + x2 + 4*x4                   
                                              =  Cons(Zero(),inc#1(add#2(x4,x2)))
        
        add#2(Cons(Zero(),x4),Cons(One(),x2)) =  10 + x2 + 4*x4                  
                                              >= 6 + x2 + 4*x4                   
                                              =  Cons(One(),add#2(x4,x2))        
        
                     add#2(Nil(),Cons(x4,x2)) =  12 + x2 + x4                    
                                              >= x2 + x4                         
                                              =  Cons(x4,x2)                     
        
                       inc#1(Cons(Zero(),x8)) =  5 + x8                          
                                              >= 2 + x8                          
                                              =  Cons(One(),x8)                  
        
                                  main(x2,x1) =  6 + x1 + 4*x2                   
                                              >= 4 + x1 + 4*x2                   
                                              =  add#2(x2,x1)                    
        
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            add#2(x2,Nil()) -> x2
            add#2(Cons(x6,x4),Cons(Zero(),x2)) -> Cons(x6,add#2(x4,x2))
            add#2(Cons(One(),x4),Cons(One(),x2)) -> Cons(Zero(),inc#1(add#2(x4,x2)))
            add#2(Cons(Zero(),x4),Cons(One(),x2)) -> Cons(One(),add#2(x4,x2))
            add#2(Nil(),Cons(x4,x2)) -> Cons(x4,x2)
            inc#1(Cons(One(),x8)) -> Cons(Zero(),inc#1(x8))
            inc#1(Cons(Zero(),x8)) -> Cons(One(),x8)
            inc#1(Nil()) -> Cons(One(),Nil())
            main(x2,x1) -> add#2(x2,x1)
        - Signature:
            {add#2/2,inc#1/1,main/2} / {Cons/2,Nil/0,One/0,Zero/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {add#2,inc#1,main} and constructors {Cons,Nil,One,Zero}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))