WORST_CASE(?,O(n^1))
* Step 1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(S) = {1},
          uargs(comp_f_g) = {2},
          uargs(comp_f_g#1) = {2},
          uargs(foldr_f#3) = {1},
          uargs(plus_x#1) = {2}
        
        Following symbols are considered usable:
          {comp_f_g#1,foldr#3,foldr_f#3,main,map#2,plus_x#1}
        TcT has computed the following interpretation:
                   p(0) = 8            
                p(Cons) = 8 + x2       
                 p(Nil) = 5            
                   p(S) = x1           
            p(comp_f_g) = x2           
          p(comp_f_g#1) = 13 + 4*x2    
             p(foldr#3) = 2            
           p(foldr_f#3) = 6 + 2*x1 + x2
                  p(id) = 1            
                p(main) = 15 + 8*x1    
               p(map#2) = 2*x1         
              p(plus_x) = 0            
            p(plus_x#1) = x2           
        
        Following rules are strictly oriented:
        comp_f_g#1(plus_x(x3),id(),0()) = 17                             
                                        > 8                              
                                        = plus_x#1(x3,0())               
        
                         foldr#3(Nil()) = 2                              
                                        > 1                              
                                        = id()                           
        
            foldr_f#3(Cons(x16,x5),x24) = 22 + x24 + 2*x5                
                                        > 21                             
                                        = comp_f_g#1(x16,foldr#3(x5),x24)
        
                   foldr_f#3(Nil(),0()) = 24                             
                                        > 8                              
                                        = 0()                            
        
                               main(x3) = 15 + 8*x3                      
                                        > 14 + 4*x3                      
                                        = foldr_f#3(map#2(x3),0())       
        
                    map#2(Cons(x16,x6)) = 16 + 2*x6                      
                                        > 8 + 2*x6                       
                                        = Cons(plus_x(x16),map#2(x6))    
        
                           map#2(Nil()) = 10                             
                                        > 5                              
                                        = Nil()                          
        
        
        Following rules are (at-least) weakly oriented:
        comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) =  13 + 4*x2                         
                                                   >= 13 + 4*x2                         
                                                   =  plus_x#1(x3,comp_f_g#1(x1,x2,0()))
        
                             foldr#3(Cons(x32,x6)) =  2                                 
                                                   >= 2                                 
                                                   =  comp_f_g(x32,foldr#3(x6))         
        
                                  plus_x#1(0(),x6) =  x6                                
                                                   >= x6                                
                                                   =  x6                                
        
                               plus_x#1(S(x8),x10) =  x10                               
                                                   >= x10                               
                                                   =  S(plus_x#1(x8,x10))               
        
* Step 2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Weak TRS:
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(S) = {1},
          uargs(comp_f_g) = {2},
          uargs(comp_f_g#1) = {2},
          uargs(foldr_f#3) = {1},
          uargs(plus_x#1) = {2}
        
        Following symbols are considered usable:
          {comp_f_g#1,foldr#3,foldr_f#3,main,map#2,plus_x#1}
        TcT has computed the following interpretation:
                   p(0) = [2]                   
                p(Cons) = [1] x2 + [4]          
                 p(Nil) = [0]                   
                   p(S) = [1] x1 + [0]          
            p(comp_f_g) = [1] x2 + [0]          
          p(comp_f_g#1) = [2] x2 + [1] x3 + [14]
             p(foldr#3) = [2] x1 + [1]          
           p(foldr_f#3) = [4] x1 + [1] x2 + [0] 
                  p(id) = [1]                   
                p(main) = [8] x1 + [2]          
               p(map#2) = [2] x1 + [0]          
              p(plus_x) = [2]                   
            p(plus_x#1) = [1] x2 + [0]          
        
        Following rules are strictly oriented:
        foldr#3(Cons(x32,x6)) = [2] x6 + [9]             
                              > [2] x6 + [1]             
                              = comp_f_g(x32,foldr#3(x6))
        
        
        Following rules are (at-least) weakly oriented:
        comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) =  [2] x2 + [16]                     
                                                   >= [2] x2 + [16]                     
                                                   =  plus_x#1(x3,comp_f_g#1(x1,x2,0()))
        
                   comp_f_g#1(plus_x(x3),id(),0()) =  [18]                              
                                                   >= [2]                               
                                                   =  plus_x#1(x3,0())                  
        
                                    foldr#3(Nil()) =  [1]                               
                                                   >= [1]                               
                                                   =  id()                              
        
                       foldr_f#3(Cons(x16,x5),x24) =  [1] x24 + [4] x5 + [16]           
                                                   >= [1] x24 + [4] x5 + [16]           
                                                   =  comp_f_g#1(x16,foldr#3(x5),x24)   
        
                              foldr_f#3(Nil(),0()) =  [2]                               
                                                   >= [2]                               
                                                   =  0()                               
        
                                          main(x3) =  [8] x3 + [2]                      
                                                   >= [8] x3 + [2]                      
                                                   =  foldr_f#3(map#2(x3),0())          
        
                               map#2(Cons(x16,x6)) =  [2] x6 + [8]                      
                                                   >= [2] x6 + [4]                      
                                                   =  Cons(plus_x(x16),map#2(x6))       
        
                                      map#2(Nil()) =  [0]                               
                                                   >= [0]                               
                                                   =  Nil()                             
        
                                  plus_x#1(0(),x6) =  [1] x6 + [0]                      
                                                   >= [1] x6 + [0]                      
                                                   =  x6                                
        
                               plus_x#1(S(x8),x10) =  [1] x10 + [0]                     
                                                   >= [1] x10 + [0]                     
                                                   =  S(plus_x#1(x8,x10))               
        
* Step 3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Weak TRS:
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(S) = {1},
          uargs(comp_f_g) = {2},
          uargs(comp_f_g#1) = {2},
          uargs(foldr_f#3) = {1},
          uargs(plus_x#1) = {2}
        
        Following symbols are considered usable:
          {comp_f_g#1,foldr#3,foldr_f#3,main,map#2,plus_x#1}
        TcT has computed the following interpretation:
                   p(0) = [1]          
                p(Cons) = [1] x2 + [2] 
                 p(Nil) = [4]          
                   p(S) = [1] x1 + [0] 
            p(comp_f_g) = [1] x2 + [2] 
          p(comp_f_g#1) = [1] x2 + [0] 
             p(foldr#3) = [4] x1 + [0] 
           p(foldr_f#3) = [6] x1 + [1] 
                  p(id) = [4]          
                p(main) = [12] x1 + [1]
               p(map#2) = [2] x1 + [0] 
              p(plus_x) = [1] x1 + [0] 
            p(plus_x#1) = [1] x2 + [0] 
        
        Following rules are strictly oriented:
        comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) = [1] x2 + [2]                      
                                                   > [1] x2 + [0]                      
                                                   = plus_x#1(x3,comp_f_g#1(x1,x2,0()))
        
        
        Following rules are (at-least) weakly oriented:
        comp_f_g#1(plus_x(x3),id(),0()) =  [4]                            
                                        >= [1]                            
                                        =  plus_x#1(x3,0())               
        
                  foldr#3(Cons(x32,x6)) =  [4] x6 + [8]                   
                                        >= [4] x6 + [2]                   
                                        =  comp_f_g(x32,foldr#3(x6))      
        
                         foldr#3(Nil()) =  [16]                           
                                        >= [4]                            
                                        =  id()                           
        
            foldr_f#3(Cons(x16,x5),x24) =  [6] x5 + [13]                  
                                        >= [4] x5 + [0]                   
                                        =  comp_f_g#1(x16,foldr#3(x5),x24)
        
                   foldr_f#3(Nil(),0()) =  [25]                           
                                        >= [1]                            
                                        =  0()                            
        
                               main(x3) =  [12] x3 + [1]                  
                                        >= [12] x3 + [1]                  
                                        =  foldr_f#3(map#2(x3),0())       
        
                    map#2(Cons(x16,x6)) =  [2] x6 + [4]                   
                                        >= [2] x6 + [2]                   
                                        =  Cons(plus_x(x16),map#2(x6))    
        
                           map#2(Nil()) =  [8]                            
                                        >= [4]                            
                                        =  Nil()                          
        
                       plus_x#1(0(),x6) =  [1] x6 + [0]                   
                                        >= [1] x6 + [0]                   
                                        =  x6                             
        
                    plus_x#1(S(x8),x10) =  [1] x10 + [0]                  
                                        >= [1] x10 + [0]                  
                                        =  S(plus_x#1(x8,x10))            
        
* Step 4: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Weak TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(S) = {1},
          uargs(comp_f_g) = {2},
          uargs(comp_f_g#1) = {2},
          uargs(foldr_f#3) = {1},
          uargs(plus_x#1) = {2}
        
        Following symbols are considered usable:
          {comp_f_g#1,foldr#3,foldr_f#3,main,map#2,plus_x#1}
        TcT has computed the following interpretation:
                   p(0) = 2           
                p(Cons) = 8 + x2      
                 p(Nil) = 4           
                   p(S) = x1          
            p(comp_f_g) = 8 + x2      
          p(comp_f_g#1) = 12 + x2 + x3
             p(foldr#3) = 1 + 2*x1    
           p(foldr_f#3) = 3*x1 + x2   
                  p(id) = 1           
                p(main) = 7 + 4*x1    
               p(map#2) = 1 + x1      
              p(plus_x) = 1 + x1      
            p(plus_x#1) = 4 + x2      
        
        Following rules are strictly oriented:
        plus_x#1(0(),x6) = 4 + x6
                         > x6    
                         = x6    
        
        
        Following rules are (at-least) weakly oriented:
        comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) =  22 + x2                           
                                                   >= 18 + x2                           
                                                   =  plus_x#1(x3,comp_f_g#1(x1,x2,0()))
        
                   comp_f_g#1(plus_x(x3),id(),0()) =  15                                
                                                   >= 6                                 
                                                   =  plus_x#1(x3,0())                  
        
                             foldr#3(Cons(x32,x6)) =  17 + 2*x6                         
                                                   >= 9 + 2*x6                          
                                                   =  comp_f_g(x32,foldr#3(x6))         
        
                                    foldr#3(Nil()) =  9                                 
                                                   >= 1                                 
                                                   =  id()                              
        
                       foldr_f#3(Cons(x16,x5),x24) =  24 + x24 + 3*x5                   
                                                   >= 13 + x24 + 2*x5                   
                                                   =  comp_f_g#1(x16,foldr#3(x5),x24)   
        
                              foldr_f#3(Nil(),0()) =  14                                
                                                   >= 2                                 
                                                   =  0()                               
        
                                          main(x3) =  7 + 4*x3                          
                                                   >= 5 + 3*x3                          
                                                   =  foldr_f#3(map#2(x3),0())          
        
                               map#2(Cons(x16,x6)) =  9 + x6                            
                                                   >= 9 + x6                            
                                                   =  Cons(plus_x(x16),map#2(x6))       
        
                                      map#2(Nil()) =  5                                 
                                                   >= 4                                 
                                                   =  Nil()                             
        
                               plus_x#1(S(x8),x10) =  4 + x10                           
                                                   >= 4 + x10                           
                                                   =  S(plus_x#1(x8,x10))               
        
* Step 5: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Weak TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(Cons) = {2},
          uargs(S) = {1},
          uargs(comp_f_g) = {2},
          uargs(comp_f_g#1) = {2},
          uargs(foldr_f#3) = {1},
          uargs(plus_x#1) = {2}
        
        Following symbols are considered usable:
          {comp_f_g#1,foldr#3,foldr_f#3,main,map#2,plus_x#1}
        TcT has computed the following interpretation:
                   p(0) = [2]                           
                p(Cons) = [1] x1 + [1] x2 + [4]         
                 p(Nil) = [2]                           
                   p(S) = [1] x1 + [4]                  
            p(comp_f_g) = [1] x1 + [1] x2 + [0]         
          p(comp_f_g#1) = [2] x1 + [2] x2 + [2] x3 + [3]
             p(foldr#3) = [2] x1 + [7]                  
           p(foldr_f#3) = [4] x1 + [2] x2 + [1]         
                  p(id) = [0]                           
                p(main) = [8] x1 + [9]                  
               p(map#2) = [2] x1 + [1]                  
              p(plus_x) = [1] x1 + [4]                  
            p(plus_x#1) = [2] x1 + [1] x2 + [0]         
        
        Following rules are strictly oriented:
        plus_x#1(S(x8),x10) = [1] x10 + [2] x8 + [8]
                            > [1] x10 + [2] x8 + [4]
                            = S(plus_x#1(x8,x10))   
        
        
        Following rules are (at-least) weakly oriented:
        comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) =  [2] x1 + [2] x2 + [2] x3 + [15]   
                                                   >= [2] x1 + [2] x2 + [2] x3 + [7]    
                                                   =  plus_x#1(x3,comp_f_g#1(x1,x2,0()))
        
                   comp_f_g#1(plus_x(x3),id(),0()) =  [2] x3 + [15]                     
                                                   >= [2] x3 + [2]                      
                                                   =  plus_x#1(x3,0())                  
        
                             foldr#3(Cons(x32,x6)) =  [2] x32 + [2] x6 + [15]           
                                                   >= [1] x32 + [2] x6 + [7]            
                                                   =  comp_f_g(x32,foldr#3(x6))         
        
                                    foldr#3(Nil()) =  [11]                              
                                                   >= [0]                               
                                                   =  id()                              
        
                       foldr_f#3(Cons(x16,x5),x24) =  [4] x16 + [2] x24 + [4] x5 + [17] 
                                                   >= [2] x16 + [2] x24 + [4] x5 + [17] 
                                                   =  comp_f_g#1(x16,foldr#3(x5),x24)   
        
                              foldr_f#3(Nil(),0()) =  [13]                              
                                                   >= [2]                               
                                                   =  0()                               
        
                                          main(x3) =  [8] x3 + [9]                      
                                                   >= [8] x3 + [9]                      
                                                   =  foldr_f#3(map#2(x3),0())          
        
                               map#2(Cons(x16,x6)) =  [2] x16 + [2] x6 + [9]            
                                                   >= [1] x16 + [2] x6 + [9]            
                                                   =  Cons(plus_x(x16),map#2(x6))       
        
                                      map#2(Nil()) =  [5]                               
                                                   >= [2]                               
                                                   =  Nil()                             
        
                                  plus_x#1(0(),x6) =  [1] x6 + [4]                      
                                                   >= [1] x6 + [0]                      
                                                   =  x6                                
        
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))