WORST_CASE(?,O(n^1))
* Step 1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(step_x_f) = {3},
          uargs(step_x_f#1) = {3,4}
        
        Following symbols are considered usable:
          {foldr#3,main,rev_l#2,step_x_f#1}
        TcT has computed the following interpretation:
                     p(Cons) = [1] x2 + [2]         
                      p(Nil) = [5]                  
          p(fleft_op_e_xs_1) = [6]                  
                  p(foldr#3) = [2] x1 + [0]         
                     p(main) = [3] x1 + [0]         
                    p(rev_l) = [2]                  
                  p(rev_l#2) = [1] x1 + [2]         
                 p(step_x_f) = [1] x3 + [4]         
               p(step_x_f#1) = [1] x3 + [1] x4 + [0]
        
        Following rules are strictly oriented:
                                      foldr#3(Nil()) = [10]                                    
                                                     > [6]                                     
                                                     = fleft_op_e_xs_1()                       
        
                                   main(Cons(x8,x9)) = [3] x9 + [6]                            
                                                     > [2] x9 + [5]                            
                                                     = step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
        
                                         main(Nil()) = [15]                                    
                                                     > [5]                                     
                                                     = Nil()                                   
        
         step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) = [1] x3 + [6]                            
                                                     > [1] x3 + [2]                            
                                                     = rev_l#2(x3,x5)                          
        
        step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) = [1] x1 + [1] x4 + [4]                   
                                                     > [1] x1 + [1] x4 + [2]                   
                                                     = step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))     
        
        
        Following rules are (at-least) weakly oriented:
        foldr#3(Cons(x16,x6)) =  [2] x6 + [4]                     
                              >= [2] x6 + [4]                     
                              =  step_x_f(rev_l(),x16,foldr#3(x6))
        
              rev_l#2(x8,x10) =  [1] x8 + [2]                     
                              >= [1] x8 + [2]                     
                              =  Cons(x10,x8)                     
        
* Step 2: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            rev_l#2(x8,x10) -> Cons(x10,x8)
        - Weak TRS:
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(step_x_f) = {3},
          uargs(step_x_f#1) = {3,4}
        
        Following symbols are considered usable:
          {foldr#3,main,rev_l#2,step_x_f#1}
        TcT has computed the following interpretation:
                     p(Cons) = 6 + x2              
                      p(Nil) = 0                   
          p(fleft_op_e_xs_1) = 0                   
                  p(foldr#3) = x1                  
                     p(main) = 6 + 4*x1            
                    p(rev_l) = 6                   
                  p(rev_l#2) = 8 + x1              
                 p(step_x_f) = x1 + x3             
               p(step_x_f#1) = 1 + 3*x1 + 4*x3 + x4
        
        Following rules are strictly oriented:
        rev_l#2(x8,x10) = 8 + x8      
                        > 6 + x8      
                        = Cons(x10,x8)
        
        
        Following rules are (at-least) weakly oriented:
                               foldr#3(Cons(x16,x6)) =  6 + x6                                  
                                                     >= 6 + x6                                  
                                                     =  step_x_f(rev_l(),x16,foldr#3(x6))       
        
                                      foldr#3(Nil()) =  0                                       
                                                     >= 0                                       
                                                     =  fleft_op_e_xs_1()                       
        
                                   main(Cons(x8,x9)) =  30 + 4*x9                               
                                                     >= 19 + 4*x9                               
                                                     =  step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
        
                                         main(Nil()) =  6                                       
                                                     >= 0                                       
                                                     =  Nil()                                   
        
         step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) =  19 + x3                                 
                                                     >= 8 + x3                                  
                                                     =  rev_l#2(x3,x5)                          
        
        step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) =  19 + x1 + 4*x2 + 4*x4                   
                                                     >= 9 + x1 + 3*x2 + 4*x4                    
                                                     =  step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))     
        
* Step 3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
        - Weak TRS:
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(step_x_f) = {3},
          uargs(step_x_f#1) = {3,4}
        
        Following symbols are considered usable:
          {foldr#3,main,rev_l#2,step_x_f#1}
        TcT has computed the following interpretation:
                     p(Cons) = [1] x2 + [4]                  
                      p(Nil) = [2]                           
          p(fleft_op_e_xs_1) = [4]                           
                  p(foldr#3) = [1] x1 + [4]                  
                     p(main) = [4] x1 + [6]                  
                    p(rev_l) = [2]                           
                  p(rev_l#2) = [1] x1 + [4]                  
                 p(step_x_f) = [1] x1 + [1] x3 + [0]         
               p(step_x_f#1) = [2] x1 + [4] x3 + [1] x4 + [0]
        
        Following rules are strictly oriented:
        foldr#3(Cons(x16,x6)) = [1] x6 + [8]                     
                              > [1] x6 + [6]                     
                              = step_x_f(rev_l(),x16,foldr#3(x6))
        
        
        Following rules are (at-least) weakly oriented:
                                      foldr#3(Nil()) =  [6]                                     
                                                     >= [4]                                     
                                                     =  fleft_op_e_xs_1()                       
        
                                   main(Cons(x8,x9)) =  [4] x9 + [22]                           
                                                     >= [4] x9 + [22]                           
                                                     =  step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
        
                                         main(Nil()) =  [14]                                    
                                                     >= [2]                                     
                                                     =  Nil()                                   
        
                                     rev_l#2(x8,x10) =  [1] x8 + [4]                            
                                                     >= [1] x8 + [4]                            
                                                     =  Cons(x10,x8)                            
        
         step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) =  [1] x3 + [20]                           
                                                     >= [1] x3 + [4]                            
                                                     =  rev_l#2(x3,x5)                          
        
        step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) =  [1] x1 + [4] x2 + [4] x4 + [4]          
                                                     >= [1] x1 + [2] x2 + [4] x4 + [4]          
                                                     =  step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))     
        
* Step 4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))