WORST_CASE(Omega(n^1),O(n^3))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
    + Considered Problem:
        - Strict TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0
            ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case
            ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0
            ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case
            ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          Concat(z,u){z -> Cons_sum(x,y,z)} =
            Concat(Cons_sum(x,y,z),u) ->^+ Cons_sum(x,y,Concat(z,u))
              = C[Concat(z,u) = Concat(z,u){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2} / {Case/3,Cons_sum/3,Cons_usual/3,Id/0,Left/0,Right/0
            ,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2,Term_var/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat,Frozen,Sum_sub,Term_sub} and constructors {Case
            ,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
          Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
          Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
          Concat#(Id(),s) -> c_4()
          Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
          Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
          Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
          Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8()
          Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
          Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
          Sum_sub#(xi,Id()) -> c_11()
          Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
          Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
          Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
          Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
          Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
          Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
          Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
          Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19()
          Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
          Term_sub#(Term_var(x),Id()) -> c_21()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Concat#(Id(),s) -> c_4()
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8()
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Sum_sub#(xi,Id()) -> c_11()
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19()
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Id()) -> c_21()
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {4,8,11,19,21}
        by application of
          Pre({4,8,11,19,21}) = {1,2,3,5,6,7,9,10,12,13,14,15,16,17,18,20}.
        Here rules are labelled as follows:
          1: Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
          2: Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
          3: Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
          4: Concat#(Id(),s) -> c_4()
          5: Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
          6: Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
          7: Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
          8: Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8()
          9: Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
          10: Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
          11: Sum_sub#(xi,Id()) -> c_11()
          12: Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
          13: Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
          14: Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
          15: Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
          16: Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
          17: Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
          18: Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
          19: Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19()
          20: Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
          21: Term_sub#(Term_var(x),Id()) -> c_21()
** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak DPs:
            Concat#(Id(),s) -> c_4()
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8()
            Sum_sub#(xi,Id()) -> c_11()
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19()
            Term_sub#(Term_var(x),Id()) -> c_21()
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
             -->_2 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_1 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_2 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_1 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_2 Concat#(Id(),s) -> c_4():17
             -->_1 Concat#(Id(),s) -> c_4():17
             -->_2 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
             -->_1 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          2:S:Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
             -->_1 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_1 Concat#(Id(),s) -> c_4():17
             -->_1 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_1 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          3:S:Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_2 Concat#(Id(),s) -> c_4():17
             -->_2 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_2 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_2 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          4:S:Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
          
          5:S:Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
          
          6:S:Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
             -->_2 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_2 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_2 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_2 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_2 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_2 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_2 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_2 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_2 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_2 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
          
          7:S:Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
             -->_1 Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s)):8
             -->_1 Sum_sub#(xi,Id()) -> c_11():19
             -->_1 Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8():18
             -->_1 Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s)):7
          
          8:S:Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
             -->_1 Sum_sub#(xi,Id()) -> c_11():19
             -->_1 Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8():18
             -->_1 Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s)):8
             -->_1 Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s)):7
          
          9:S:Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
             -->_2 Sum_sub#(xi,Id()) -> c_11():19
             -->_2 Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8():18
             -->_2 Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s)):8
             -->_2 Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s)):7
             -->_1 Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s)):6
             -->_1 Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s)):5
             -->_1 Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s)):4
          
          10:S:Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
             -->_2 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_2 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_2 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_2 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_2 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_2 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_2 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_2 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_2 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_2 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
          
          11:S:Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
          
          12:S:Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
          
          13:S:Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
             -->_2 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_2 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_2 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_2 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_2 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_2 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_2 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_2 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_2 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_2 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
          
          14:S:Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_2 Concat#(Id(),s) -> c_4():17
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):14
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):13
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):12
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):11
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):10
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):9
             -->_2 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_2 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_2 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          15:S:Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
          
          16:S:Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
             -->_1 Term_sub#(Term_var(x),Id()) -> c_21():21
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19():20
             -->_1 Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s)):16
             -->_1 Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s)):15
          
          17:W:Concat#(Id(),s) -> c_4()
             
          
          18:W:Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8()
             
          
          19:W:Sum_sub#(xi,Id()) -> c_11()
             
          
          20:W:Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19()
             
          
          21:W:Term_sub#(Term_var(x),Id()) -> c_21()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          18: Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_8()
          19: Sum_sub#(xi,Id()) -> c_11()
          17: Concat#(Id(),s) -> c_4()
          20: Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_19()
          21: Term_sub#(Term_var(x),Id()) -> c_21()
** Step 1.b:4: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
          Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
          Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
          Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
          Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
          Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
          Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
          Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
          Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
          Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
          Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
          Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        and a lower component
          Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
          Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
          Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
          Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        Further, following extension rules are added to the lower component.
          Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u))
          Concat#(Concat(s,t),u) -> Concat#(t,u)
          Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t)
          Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t)
          Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t)
          Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s)
          Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s)
          Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s)
          Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s)
          Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s)
          Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s)
          Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s)
          Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s)
          Term_sub#(Term_inl(m),s) -> Term_sub#(m,s)
          Term_sub#(Term_inr(m),s) -> Term_sub#(m,s)
          Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s)
          Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s)
          Term_sub#(Term_sub(m,s),t) -> Concat#(s,t)
          Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t))
*** Step 1.b:4.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
             -->_2 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_1 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_2 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_1 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_2 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
             -->_1 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          2:S:Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
             -->_1 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_1 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_1 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          3:S:Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
             -->_2 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_2 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_2 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
          4:S:Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          5:S:Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          6:S:Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
             -->_2 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_2 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_2 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_2 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_2 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_2 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          7:S:Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s))
             -->_1 Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s)):6
             -->_1 Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s)):5
             -->_1 Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s)):4
          
          8:S:Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
             -->_2 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_2 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_2 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_2 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_2 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_2 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          9:S:Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          10:S:Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          11:S:Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
             -->_2 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_2 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_2 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_2 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_2 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_2 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
          
          12:S:Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
             -->_1 Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t)):12
             -->_1 Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s)):11
             -->_1 Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s)):10
             -->_1 Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s)):9
             -->_1 Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s)):8
             -->_1 Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s),Sum_sub#(xi,s)):7
             -->_2 Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t)):3
             -->_2 Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t)):2
             -->_2 Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
*** Step 1.b:4.a:2: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1,2},
          uargs(c_14) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {Sum_sub,Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = [1] x1 + [1] x2 + [1] x3 + [3]
                p(Concat) = [3] x1 + [3] x2 + [1]         
              p(Cons_sum) = [1] x1 + [1] x3 + [0]         
            p(Cons_usual) = [1] x2 + [1] x3 + [0]         
                p(Frozen) = [4] x1 + [4] x4 + [6]         
                    p(Id) = [0]                           
                  p(Left) = [4]                           
                 p(Right) = [0]                           
          p(Sum_constant) = [4]                           
               p(Sum_sub) = [1] x1 + [6]                  
          p(Sum_term_var) = [2]                           
              p(Term_app) = [1] x1 + [1] x2 + [2]         
              p(Term_inl) = [1] x1 + [1]                  
              p(Term_inr) = [1] x1 + [0]                  
             p(Term_pair) = [1] x1 + [1] x2 + [2]         
              p(Term_sub) = [2] x1 + [2] x2 + [0]         
              p(Term_var) = [1]                           
               p(Concat#) = [4] x1 + [0]                  
               p(Frozen#) = [4] x1 + [2] x2 + [4] x3 + [0]
              p(Sum_sub#) = [1] x1 + [4]                  
             p(Term_sub#) = [4] x1 + [0]                  
                   p(c_1) = [1] x1 + [2] x2 + [3]         
                   p(c_2) = [1] x1 + [0]                  
                   p(c_3) = [1] x1 + [1] x2 + [0]         
                   p(c_4) = [2]                           
                   p(c_5) = [1] x1 + [1]                  
                   p(c_6) = [1] x1 + [7]                  
                   p(c_7) = [1] x1 + [1] x2 + [4]         
                   p(c_8) = [1]                           
                   p(c_9) = [4]                           
                  p(c_10) = [0]                           
                  p(c_11) = [1]                           
                  p(c_12) = [1] x1 + [0]                  
                  p(c_13) = [1] x1 + [1] x2 + [6]         
                  p(c_14) = [1] x1 + [4]                  
                  p(c_15) = [1] x1 + [0]                  
                  p(c_16) = [1] x1 + [1] x2 + [4]         
                  p(c_17) = [1] x1 + [2] x2 + [0]         
                  p(c_18) = [1] x1 + [1]                  
                  p(c_19) = [0]                           
                  p(c_20) = [1] x1 + [0]                  
                  p(c_21) = [0]                           
        
        Following rules are strictly oriented:
                      Concat#(Concat(s,t),u) = [12] s + [12] t + [4]                   
                                             > [4] s + [8] t + [3]                     
                                             = c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
        
         Frozen#(m,Sum_constant(Left()),n,s) = [4] m + [4] n + [8]                     
                                             > [4] m + [1]                             
                                             = c_5(Term_sub#(m,s))                     
        
        Frozen#(m,Sum_constant(Right()),n,s) = [4] m + [4] n + [8]                     
                                             > [4] n + [7]                             
                                             = c_6(Term_sub#(n,s))                     
        
                  Term_sub#(Term_app(m,n),s) = [4] m + [4] n + [8]                     
                                             > [4] m + [4] n + [6]                     
                                             = c_13(Term_sub#(m,s),Term_sub#(n,s))     
        
                 Term_sub#(Term_pair(m,n),s) = [4] m + [4] n + [8]                     
                                             > [4] m + [4] n + [4]                     
                                             = c_16(Term_sub#(m,s),Term_sub#(n,s))     
        
        
        Following rules are (at-least) weakly oriented:
            Concat#(Cons_sum(xi,k,s),t) =  [4] s + [4] xi + [0]                       
                                        >= [4] s + [0]                                
                                        =  c_2(Concat#(s,t))                          
        
           Concat#(Cons_usual(x,m,s),t) =  [4] m + [4] s + [0]                        
                                        >= [4] m + [4] s + [0]                        
                                        =  c_3(Term_sub#(m,t),Concat#(s,t))           
        
        Frozen#(m,Sum_term_var(xi),n,s) =  [4] m + [4] n + [4]                        
                                        >= [4] m + [4] n + [4]                        
                                        =  c_7(Term_sub#(m,s),Term_sub#(n,s))         
        
              Term_sub#(Case(m,xi,n),s) =  [4] m + [4] n + [4] xi + [12]              
                                        >= [4] m + [4] n + [2] xi + [12]              
                                        =  c_12(Frozen#(m,Sum_sub(xi,s),n,s))         
        
               Term_sub#(Term_inl(m),s) =  [4] m + [4]                                
                                        >= [4] m + [4]                                
                                        =  c_14(Term_sub#(m,s))                       
        
               Term_sub#(Term_inr(m),s) =  [4] m + [0]                                
                                        >= [4] m + [0]                                
                                        =  c_15(Term_sub#(m,s))                       
        
             Term_sub#(Term_sub(m,s),t) =  [8] m + [8] s + [0]                        
                                        >= [4] m + [8] s + [0]                        
                                        =  c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        
          Sum_sub(xi,Cons_sum(psi,k,s)) =  [1] xi + [6]                               
                                        >= [4]                                        
                                        =  Sum_constant(k)                            
        
          Sum_sub(xi,Cons_sum(psi,k,s)) =  [1] xi + [6]                               
                                        >= [1] xi + [6]                               
                                        =  Sum_sub(xi,s)                              
        
          Sum_sub(xi,Cons_usual(y,m,s)) =  [1] xi + [6]                               
                                        >= [1] xi + [6]                               
                                        =  Sum_sub(xi,s)                              
        
                       Sum_sub(xi,Id()) =  [1] xi + [6]                               
                                        >= [2]                                        
                                        =  Sum_term_var(xi)                           
        
*** Step 1.b:4.a:3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1,2},
          uargs(c_14) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = [1] x1 + [1] x3 + [1]         
                p(Concat) = [2] x1 + [1] x2 + [1]         
              p(Cons_sum) = [1] x3 + [0]                  
            p(Cons_usual) = [1] x1 + [1] x2 + [1] x3 + [0]
                p(Frozen) = [1] x2 + [1] x3 + [2]         
                    p(Id) = [0]                           
                  p(Left) = [2]                           
                 p(Right) = [0]                           
          p(Sum_constant) = [2]                           
               p(Sum_sub) = [0]                           
          p(Sum_term_var) = [0]                           
              p(Term_app) = [1] x1 + [1] x2 + [0]         
              p(Term_inl) = [1] x1 + [0]                  
              p(Term_inr) = [1] x1 + [0]                  
             p(Term_pair) = [1] x1 + [1] x2 + [1]         
              p(Term_sub) = [2] x1 + [1] x2 + [0]         
              p(Term_var) = [5]                           
               p(Concat#) = [4] x1 + [0]                  
               p(Frozen#) = [4] x1 + [4] x3 + [2]         
              p(Sum_sub#) = [1] x1 + [4] x2 + [1]         
             p(Term_sub#) = [4] x1 + [0]                  
                   p(c_1) = [1] x1 + [1] x2 + [0]         
                   p(c_2) = [1] x1 + [0]                  
                   p(c_3) = [1] x1 + [1] x2 + [0]         
                   p(c_4) = [1]                           
                   p(c_5) = [1] x1 + [0]                  
                   p(c_6) = [1] x1 + [2]                  
                   p(c_7) = [1] x1 + [1] x2 + [1]         
                   p(c_8) = [1]                           
                   p(c_9) = [1]                           
                  p(c_10) = [1]                           
                  p(c_11) = [2]                           
                  p(c_12) = [1] x1 + [1]                  
                  p(c_13) = [1] x1 + [1] x2 + [0]         
                  p(c_14) = [1] x1 + [0]                  
                  p(c_15) = [1] x1 + [0]                  
                  p(c_16) = [1] x1 + [1] x2 + [2]         
                  p(c_17) = [2] x1 + [1] x2 + [0]         
                  p(c_18) = [1] x1 + [4]                  
                  p(c_19) = [0]                           
                  p(c_20) = [1] x1 + [4]                  
                  p(c_21) = [1]                           
        
        Following rules are strictly oriented:
        Frozen#(m,Sum_term_var(xi),n,s) = [4] m + [4] n + [2]               
                                        > [4] m + [4] n + [1]               
                                        = c_7(Term_sub#(m,s),Term_sub#(n,s))
        
              Term_sub#(Case(m,xi,n),s) = [4] m + [4] n + [4]               
                                        > [4] m + [4] n + [3]               
                                        = c_12(Frozen#(m,Sum_sub(xi,s),n,s))
        
        
        Following rules are (at-least) weakly oriented:
                      Concat#(Concat(s,t),u) =  [8] s + [4] t + [4]                        
                                             >= [4] s + [4] t + [0]                        
                                             =  c_1(Concat#(s,Concat(t,u)),Concat#(t,u))   
        
                 Concat#(Cons_sum(xi,k,s),t) =  [4] s + [0]                                
                                             >= [4] s + [0]                                
                                             =  c_2(Concat#(s,t))                          
        
                Concat#(Cons_usual(x,m,s),t) =  [4] m + [4] s + [4] x + [0]                
                                             >= [4] m + [4] s + [0]                        
                                             =  c_3(Term_sub#(m,t),Concat#(s,t))           
        
         Frozen#(m,Sum_constant(Left()),n,s) =  [4] m + [4] n + [2]                        
                                             >= [4] m + [0]                                
                                             =  c_5(Term_sub#(m,s))                        
        
        Frozen#(m,Sum_constant(Right()),n,s) =  [4] m + [4] n + [2]                        
                                             >= [4] n + [2]                                
                                             =  c_6(Term_sub#(n,s))                        
        
                  Term_sub#(Term_app(m,n),s) =  [4] m + [4] n + [0]                        
                                             >= [4] m + [4] n + [0]                        
                                             =  c_13(Term_sub#(m,s),Term_sub#(n,s))        
        
                    Term_sub#(Term_inl(m),s) =  [4] m + [0]                                
                                             >= [4] m + [0]                                
                                             =  c_14(Term_sub#(m,s))                       
        
                    Term_sub#(Term_inr(m),s) =  [4] m + [0]                                
                                             >= [4] m + [0]                                
                                             =  c_15(Term_sub#(m,s))                       
        
                 Term_sub#(Term_pair(m,n),s) =  [4] m + [4] n + [4]                        
                                             >= [4] m + [4] n + [2]                        
                                             =  c_16(Term_sub#(m,s),Term_sub#(n,s))        
        
                  Term_sub#(Term_sub(m,s),t) =  [8] m + [4] s + [0]                        
                                             >= [8] m + [4] s + [0]                        
                                             =  c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        
*** Step 1.b:4.a:4: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1,2},
          uargs(c_14) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = [1] x1 + [1] x2 + [1] x3 + [1]
                p(Concat) = [2] x1 + [1] x2 + [0]         
              p(Cons_sum) = [1] x3 + [1]                  
            p(Cons_usual) = [1] x2 + [1] x3 + [0]         
                p(Frozen) = [4] x2 + [1] x3 + [2]         
                    p(Id) = [0]                           
                  p(Left) = [0]                           
                 p(Right) = [2]                           
          p(Sum_constant) = [2]                           
               p(Sum_sub) = [0]                           
          p(Sum_term_var) = [2]                           
              p(Term_app) = [1] x1 + [1] x2 + [1]         
              p(Term_inl) = [1] x1 + [0]                  
              p(Term_inr) = [1] x1 + [0]                  
             p(Term_pair) = [1] x1 + [1] x2 + [2]         
              p(Term_sub) = [1] x1 + [2] x2 + [0]         
              p(Term_var) = [0]                           
               p(Concat#) = [4] x1 + [0]                  
               p(Frozen#) = [4] x1 + [4] x3 + [4]         
              p(Sum_sub#) = [0]                           
             p(Term_sub#) = [4] x1 + [0]                  
                   p(c_1) = [2] x1 + [1] x2 + [0]         
                   p(c_2) = [1] x1 + [0]                  
                   p(c_3) = [1] x1 + [1] x2 + [0]         
                   p(c_4) = [2]                           
                   p(c_5) = [1] x1 + [0]                  
                   p(c_6) = [1] x1 + [1]                  
                   p(c_7) = [1] x1 + [1] x2 + [2]         
                   p(c_8) = [0]                           
                   p(c_9) = [1] x1 + [2]                  
                  p(c_10) = [2] x1 + [0]                  
                  p(c_11) = [0]                           
                  p(c_12) = [1] x1 + [0]                  
                  p(c_13) = [1] x1 + [1] x2 + [1]         
                  p(c_14) = [1] x1 + [0]                  
                  p(c_15) = [1] x1 + [0]                  
                  p(c_16) = [1] x1 + [1] x2 + [7]         
                  p(c_17) = [1] x1 + [2] x2 + [0]         
                  p(c_18) = [1]                           
                  p(c_19) = [2]                           
                  p(c_20) = [2] x1 + [1]                  
                  p(c_21) = [4]                           
        
        Following rules are strictly oriented:
        Concat#(Cons_sum(xi,k,s),t) = [4] s + [4]      
                                    > [4] s + [0]      
                                    = c_2(Concat#(s,t))
        
        
        Following rules are (at-least) weakly oriented:
                      Concat#(Concat(s,t),u) =  [8] s + [4] t + [0]                        
                                             >= [8] s + [4] t + [0]                        
                                             =  c_1(Concat#(s,Concat(t,u)),Concat#(t,u))   
        
                Concat#(Cons_usual(x,m,s),t) =  [4] m + [4] s + [0]                        
                                             >= [4] m + [4] s + [0]                        
                                             =  c_3(Term_sub#(m,t),Concat#(s,t))           
        
         Frozen#(m,Sum_constant(Left()),n,s) =  [4] m + [4] n + [4]                        
                                             >= [4] m + [0]                                
                                             =  c_5(Term_sub#(m,s))                        
        
        Frozen#(m,Sum_constant(Right()),n,s) =  [4] m + [4] n + [4]                        
                                             >= [4] n + [1]                                
                                             =  c_6(Term_sub#(n,s))                        
        
             Frozen#(m,Sum_term_var(xi),n,s) =  [4] m + [4] n + [4]                        
                                             >= [4] m + [4] n + [2]                        
                                             =  c_7(Term_sub#(m,s),Term_sub#(n,s))         
        
                   Term_sub#(Case(m,xi,n),s) =  [4] m + [4] n + [4] xi + [4]               
                                             >= [4] m + [4] n + [4]                        
                                             =  c_12(Frozen#(m,Sum_sub(xi,s),n,s))         
        
                  Term_sub#(Term_app(m,n),s) =  [4] m + [4] n + [4]                        
                                             >= [4] m + [4] n + [1]                        
                                             =  c_13(Term_sub#(m,s),Term_sub#(n,s))        
        
                    Term_sub#(Term_inl(m),s) =  [4] m + [0]                                
                                             >= [4] m + [0]                                
                                             =  c_14(Term_sub#(m,s))                       
        
                    Term_sub#(Term_inr(m),s) =  [4] m + [0]                                
                                             >= [4] m + [0]                                
                                             =  c_15(Term_sub#(m,s))                       
        
                 Term_sub#(Term_pair(m,n),s) =  [4] m + [4] n + [8]                        
                                             >= [4] m + [4] n + [7]                        
                                             =  c_16(Term_sub#(m,s),Term_sub#(n,s))        
        
                  Term_sub#(Term_sub(m,s),t) =  [4] m + [8] s + [0]                        
                                             >= [4] m + [8] s + [0]                        
                                             =  c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        
*** Step 1.b:4.a:5: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1,2},
          uargs(c_14) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = [1] x1 + [1] x2 + [1] x3 + [2]
                p(Concat) = [1] x1 + [2] x2 + [2]         
              p(Cons_sum) = [1] x3 + [0]                  
            p(Cons_usual) = [1] x2 + [1] x3 + [0]         
                p(Frozen) = [1] x3 + [6]                  
                    p(Id) = [1]                           
                  p(Left) = [0]                           
                 p(Right) = [1]                           
          p(Sum_constant) = [0]                           
               p(Sum_sub) = [2] x2 + [1]                  
          p(Sum_term_var) = [0]                           
              p(Term_app) = [1] x1 + [1] x2 + [0]         
              p(Term_inl) = [1] x1 + [0]                  
              p(Term_inr) = [1] x1 + [4]                  
             p(Term_pair) = [1] x1 + [1] x2 + [4]         
              p(Term_sub) = [1] x1 + [4] x2 + [5]         
              p(Term_var) = [4]                           
               p(Concat#) = [4] x1 + [0]                  
               p(Frozen#) = [2] x1 + [2] x3 + [0]         
              p(Sum_sub#) = [4] x1 + [2] x2 + [4]         
             p(Term_sub#) = [2] x1 + [0]                  
                   p(c_1) = [1] x1 + [1] x2 + [1]         
                   p(c_2) = [1] x1 + [0]                  
                   p(c_3) = [2] x1 + [1] x2 + [0]         
                   p(c_4) = [0]                           
                   p(c_5) = [1] x1 + [0]                  
                   p(c_6) = [1] x1 + [0]                  
                   p(c_7) = [1] x1 + [1] x2 + [0]         
                   p(c_8) = [0]                           
                   p(c_9) = [1]                           
                  p(c_10) = [2] x1 + [0]                  
                  p(c_11) = [1]                           
                  p(c_12) = [1] x1 + [4]                  
                  p(c_13) = [1] x1 + [1] x2 + [0]         
                  p(c_14) = [1] x1 + [0]                  
                  p(c_15) = [1] x1 + [6]                  
                  p(c_16) = [1] x1 + [1] x2 + [6]         
                  p(c_17) = [1] x1 + [2] x2 + [6]         
                  p(c_18) = [1] x1 + [1]                  
                  p(c_19) = [2]                           
                  p(c_20) = [1] x1 + [1]                  
                  p(c_21) = [1]                           
        
        Following rules are strictly oriented:
          Term_sub#(Term_inr(m),s) = [2] m + [8]                                
                                   > [2] m + [6]                                
                                   = c_15(Term_sub#(m,s))                       
        
        Term_sub#(Term_sub(m,s),t) = [2] m + [8] s + [10]                       
                                   > [2] m + [8] s + [6]                        
                                   = c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        
        
        Following rules are (at-least) weakly oriented:
                      Concat#(Concat(s,t),u) =  [4] s + [8] t + [8]                     
                                             >= [4] s + [4] t + [1]                     
                                             =  c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
        
                 Concat#(Cons_sum(xi,k,s),t) =  [4] s + [0]                             
                                             >= [4] s + [0]                             
                                             =  c_2(Concat#(s,t))                       
        
                Concat#(Cons_usual(x,m,s),t) =  [4] m + [4] s + [0]                     
                                             >= [4] m + [4] s + [0]                     
                                             =  c_3(Term_sub#(m,t),Concat#(s,t))        
        
         Frozen#(m,Sum_constant(Left()),n,s) =  [2] m + [2] n + [0]                     
                                             >= [2] m + [0]                             
                                             =  c_5(Term_sub#(m,s))                     
        
        Frozen#(m,Sum_constant(Right()),n,s) =  [2] m + [2] n + [0]                     
                                             >= [2] n + [0]                             
                                             =  c_6(Term_sub#(n,s))                     
        
             Frozen#(m,Sum_term_var(xi),n,s) =  [2] m + [2] n + [0]                     
                                             >= [2] m + [2] n + [0]                     
                                             =  c_7(Term_sub#(m,s),Term_sub#(n,s))      
        
                   Term_sub#(Case(m,xi,n),s) =  [2] m + [2] n + [2] xi + [4]            
                                             >= [2] m + [2] n + [4]                     
                                             =  c_12(Frozen#(m,Sum_sub(xi,s),n,s))      
        
                  Term_sub#(Term_app(m,n),s) =  [2] m + [2] n + [0]                     
                                             >= [2] m + [2] n + [0]                     
                                             =  c_13(Term_sub#(m,s),Term_sub#(n,s))     
        
                    Term_sub#(Term_inl(m),s) =  [2] m + [0]                             
                                             >= [2] m + [0]                             
                                             =  c_14(Term_sub#(m,s))                    
        
                 Term_sub#(Term_pair(m,n),s) =  [2] m + [2] n + [8]                     
                                             >= [2] m + [2] n + [6]                     
                                             =  c_16(Term_sub#(m,s),Term_sub#(n,s))     
        
*** Step 1.b:4.a:6: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1,2},
          uargs(c_14) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = [1] x1 + [1] x2 + [1] x3 + [2]
                p(Concat) = [1] x1 + [2] x2 + [3]         
              p(Cons_sum) = [1] x1 + [1] x2 + [1] x3 + [0]
            p(Cons_usual) = [1] x1 + [1] x2 + [1] x3 + [2]
                p(Frozen) = [0]                           
                    p(Id) = [0]                           
                  p(Left) = [0]                           
                 p(Right) = [0]                           
          p(Sum_constant) = [1] x1 + [0]                  
               p(Sum_sub) = [0]                           
          p(Sum_term_var) = [1] x1 + [0]                  
              p(Term_app) = [1] x1 + [1] x2 + [0]         
              p(Term_inl) = [1] x1 + [0]                  
              p(Term_inr) = [1] x1 + [0]                  
             p(Term_pair) = [1] x1 + [1] x2 + [2]         
              p(Term_sub) = [2] x1 + [1] x2 + [0]         
              p(Term_var) = [1] x1 + [0]                  
               p(Concat#) = [4] x1 + [0]                  
               p(Frozen#) = [4] x1 + [4] x3 + [2]         
              p(Sum_sub#) = [0]                           
             p(Term_sub#) = [4] x1 + [0]                  
                   p(c_1) = [1] x1 + [1] x2 + [0]         
                   p(c_2) = [1] x1 + [0]                  
                   p(c_3) = [1] x1 + [1] x2 + [6]         
                   p(c_4) = [0]                           
                   p(c_5) = [1] x1 + [0]                  
                   p(c_6) = [1] x1 + [0]                  
                   p(c_7) = [1] x1 + [1] x2 + [0]         
                   p(c_8) = [0]                           
                   p(c_9) = [0]                           
                  p(c_10) = [0]                           
                  p(c_11) = [0]                           
                  p(c_12) = [1] x1 + [4]                  
                  p(c_13) = [1] x1 + [1] x2 + [0]         
                  p(c_14) = [1] x1 + [0]                  
                  p(c_15) = [1] x1 + [0]                  
                  p(c_16) = [1] x1 + [1] x2 + [3]         
                  p(c_17) = [2] x1 + [1] x2 + [0]         
                  p(c_18) = [0]                           
                  p(c_19) = [0]                           
                  p(c_20) = [0]                           
                  p(c_21) = [0]                           
        
        Following rules are strictly oriented:
        Concat#(Cons_usual(x,m,s),t) = [4] m + [4] s + [4] x + [8]     
                                     > [4] m + [4] s + [6]             
                                     = c_3(Term_sub#(m,t),Concat#(s,t))
        
        
        Following rules are (at-least) weakly oriented:
                      Concat#(Concat(s,t),u) =  [4] s + [8] t + [12]                       
                                             >= [4] s + [4] t + [0]                        
                                             =  c_1(Concat#(s,Concat(t,u)),Concat#(t,u))   
        
                 Concat#(Cons_sum(xi,k,s),t) =  [4] k + [4] s + [4] xi + [0]               
                                             >= [4] s + [0]                                
                                             =  c_2(Concat#(s,t))                          
        
         Frozen#(m,Sum_constant(Left()),n,s) =  [4] m + [4] n + [2]                        
                                             >= [4] m + [0]                                
                                             =  c_5(Term_sub#(m,s))                        
        
        Frozen#(m,Sum_constant(Right()),n,s) =  [4] m + [4] n + [2]                        
                                             >= [4] n + [0]                                
                                             =  c_6(Term_sub#(n,s))                        
        
             Frozen#(m,Sum_term_var(xi),n,s) =  [4] m + [4] n + [2]                        
                                             >= [4] m + [4] n + [0]                        
                                             =  c_7(Term_sub#(m,s),Term_sub#(n,s))         
        
                   Term_sub#(Case(m,xi,n),s) =  [4] m + [4] n + [4] xi + [8]               
                                             >= [4] m + [4] n + [6]                        
                                             =  c_12(Frozen#(m,Sum_sub(xi,s),n,s))         
        
                  Term_sub#(Term_app(m,n),s) =  [4] m + [4] n + [0]                        
                                             >= [4] m + [4] n + [0]                        
                                             =  c_13(Term_sub#(m,s),Term_sub#(n,s))        
        
                    Term_sub#(Term_inl(m),s) =  [4] m + [0]                                
                                             >= [4] m + [0]                                
                                             =  c_14(Term_sub#(m,s))                       
        
                    Term_sub#(Term_inr(m),s) =  [4] m + [0]                                
                                             >= [4] m + [0]                                
                                             =  c_15(Term_sub#(m,s))                       
        
                 Term_sub#(Term_pair(m,n),s) =  [4] m + [4] n + [8]                        
                                             >= [4] m + [4] n + [3]                        
                                             =  c_16(Term_sub#(m,s),Term_sub#(n,s))        
        
                  Term_sub#(Term_sub(m,s),t) =  [8] m + [4] s + [0]                        
                                             >= [8] m + [4] s + [0]                        
                                             =  c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        
*** Step 1.b:4.a:7: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_2) = {1},
          uargs(c_3) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1,2},
          uargs(c_14) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = [1] x1 + [1] x3 + [0]         
                p(Concat) = [3] x1 + [3] x2 + [0]         
              p(Cons_sum) = [1] x1 + [1] x2 + [1] x3 + [0]
            p(Cons_usual) = [1] x1 + [1] x2 + [1] x3 + [3]
                p(Frozen) = [2] x2 + [0]                  
                    p(Id) = [0]                           
                  p(Left) = [0]                           
                 p(Right) = [0]                           
          p(Sum_constant) = [1] x1 + [0]                  
               p(Sum_sub) = [4] x2 + [3]                  
          p(Sum_term_var) = [1] x1 + [0]                  
              p(Term_app) = [1] x1 + [1] x2 + [2]         
              p(Term_inl) = [1] x1 + [2]                  
              p(Term_inr) = [1] x1 + [1]                  
             p(Term_pair) = [1] x1 + [1] x2 + [0]         
              p(Term_sub) = [2] x1 + [1] x2 + [0]         
              p(Term_var) = [1] x1 + [0]                  
               p(Concat#) = [2] x1 + [0]                  
               p(Frozen#) = [2] x1 + [2] x3 + [0]         
              p(Sum_sub#) = [0]                           
             p(Term_sub#) = [2] x1 + [0]                  
                   p(c_1) = [2] x1 + [2] x2 + [0]         
                   p(c_2) = [1] x1 + [0]                  
                   p(c_3) = [1] x1 + [1] x2 + [0]         
                   p(c_4) = [0]                           
                   p(c_5) = [1] x1 + [0]                  
                   p(c_6) = [1] x1 + [0]                  
                   p(c_7) = [1] x1 + [1] x2 + [0]         
                   p(c_8) = [0]                           
                   p(c_9) = [0]                           
                  p(c_10) = [0]                           
                  p(c_11) = [0]                           
                  p(c_12) = [1] x1 + [0]                  
                  p(c_13) = [1] x1 + [1] x2 + [4]         
                  p(c_14) = [1] x1 + [0]                  
                  p(c_15) = [1] x1 + [2]                  
                  p(c_16) = [1] x1 + [1] x2 + [0]         
                  p(c_17) = [2] x1 + [1] x2 + [0]         
                  p(c_18) = [0]                           
                  p(c_19) = [0]                           
                  p(c_20) = [0]                           
                  p(c_21) = [0]                           
        
        Following rules are strictly oriented:
        Term_sub#(Term_inl(m),s) = [2] m + [4]         
                                 > [2] m + [0]         
                                 = c_14(Term_sub#(m,s))
        
        
        Following rules are (at-least) weakly oriented:
                      Concat#(Concat(s,t),u) =  [6] s + [6] t + [0]                        
                                             >= [4] s + [4] t + [0]                        
                                             =  c_1(Concat#(s,Concat(t,u)),Concat#(t,u))   
        
                 Concat#(Cons_sum(xi,k,s),t) =  [2] k + [2] s + [2] xi + [0]               
                                             >= [2] s + [0]                                
                                             =  c_2(Concat#(s,t))                          
        
                Concat#(Cons_usual(x,m,s),t) =  [2] m + [2] s + [2] x + [6]                
                                             >= [2] m + [2] s + [0]                        
                                             =  c_3(Term_sub#(m,t),Concat#(s,t))           
        
         Frozen#(m,Sum_constant(Left()),n,s) =  [2] m + [2] n + [0]                        
                                             >= [2] m + [0]                                
                                             =  c_5(Term_sub#(m,s))                        
        
        Frozen#(m,Sum_constant(Right()),n,s) =  [2] m + [2] n + [0]                        
                                             >= [2] n + [0]                                
                                             =  c_6(Term_sub#(n,s))                        
        
             Frozen#(m,Sum_term_var(xi),n,s) =  [2] m + [2] n + [0]                        
                                             >= [2] m + [2] n + [0]                        
                                             =  c_7(Term_sub#(m,s),Term_sub#(n,s))         
        
                   Term_sub#(Case(m,xi,n),s) =  [2] m + [2] n + [0]                        
                                             >= [2] m + [2] n + [0]                        
                                             =  c_12(Frozen#(m,Sum_sub(xi,s),n,s))         
        
                  Term_sub#(Term_app(m,n),s) =  [2] m + [2] n + [4]                        
                                             >= [2] m + [2] n + [4]                        
                                             =  c_13(Term_sub#(m,s),Term_sub#(n,s))        
        
                    Term_sub#(Term_inr(m),s) =  [2] m + [2]                                
                                             >= [2] m + [2]                                
                                             =  c_15(Term_sub#(m,s))                       
        
                 Term_sub#(Term_pair(m,n),s) =  [2] m + [2] n + [0]                        
                                             >= [2] m + [2] n + [0]                        
                                             =  c_16(Term_sub#(m,s),Term_sub#(n,s))        
        
                  Term_sub#(Term_sub(m,s),t) =  [4] m + [2] s + [0]                        
                                             >= [4] m + [2] s + [0]                        
                                             =  c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        
*** Step 1.b:4.a:8: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            Concat#(Concat(s,t),u) -> c_1(Concat#(s,Concat(t,u)),Concat#(t,u))
            Concat#(Cons_sum(xi,k,s),t) -> c_2(Concat#(s,t))
            Concat#(Cons_usual(x,m,s),t) -> c_3(Term_sub#(m,t),Concat#(s,t))
            Frozen#(m,Sum_constant(Left()),n,s) -> c_5(Term_sub#(m,s))
            Frozen#(m,Sum_constant(Right()),n,s) -> c_6(Term_sub#(n,s))
            Frozen#(m,Sum_term_var(xi),n,s) -> c_7(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Case(m,xi,n),s) -> c_12(Frozen#(m,Sum_sub(xi,s),n,s))
            Term_sub#(Term_app(m,n),s) -> c_13(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_inl(m),s) -> c_14(Term_sub#(m,s))
            Term_sub#(Term_inr(m),s) -> c_15(Term_sub#(m,s))
            Term_sub#(Term_pair(m,n),s) -> c_16(Term_sub#(m,s),Term_sub#(n,s))
            Term_sub#(Term_sub(m,s),t) -> c_17(Term_sub#(m,Concat(s,t)),Concat#(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:4.b:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u))
            Concat#(Concat(s,t),u) -> Concat#(t,u)
            Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t)
            Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s)
            Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s)
            Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_inl(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_inr(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_sub(m,s),t) -> Concat#(s,t)
            Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1},
          uargs(c_18) = {1},
          uargs(c_20) = {1}
        
        Following symbols are considered usable:
          {Concat,Frozen,Sum_sub,Term_sub,Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = 1 + x1 + x3                             
                p(Concat) = x1 + x1*x2 + x2                         
              p(Cons_sum) = x1 + x3                                 
            p(Cons_usual) = 1 + x2 + x3                             
                p(Frozen) = 1 + x1 + x1*x4 + x2*x4 + x3 + x3*x4 + x4
                    p(Id) = 0                                       
                  p(Left) = 0                                       
                 p(Right) = 0                                       
          p(Sum_constant) = 0                                       
               p(Sum_sub) = 1                                       
          p(Sum_term_var) = 1                                       
              p(Term_app) = 1 + x1 + x2                             
              p(Term_inl) = x1                                      
              p(Term_inr) = x1                                      
             p(Term_pair) = 1 + x1 + x2                             
              p(Term_sub) = x1 + x1*x2 + x2                         
              p(Term_var) = 0                                       
               p(Concat#) = x1 + x1*x2                              
               p(Frozen#) = x1 + x1*x4 + x3 + x3*x4 + x4            
              p(Sum_sub#) = x2                                      
             p(Term_sub#) = x1 + x1*x2                              
                   p(c_1) = 0                                       
                   p(c_2) = 0                                       
                   p(c_3) = 0                                       
                   p(c_4) = 0                                       
                   p(c_5) = 0                                       
                   p(c_6) = 0                                       
                   p(c_7) = 0                                       
                   p(c_8) = 0                                       
                   p(c_9) = x1                                      
                  p(c_10) = x1                                      
                  p(c_11) = 0                                       
                  p(c_12) = 0                                       
                  p(c_13) = 0                                       
                  p(c_14) = 0                                       
                  p(c_15) = 0                                       
                  p(c_16) = 0                                       
                  p(c_17) = 0                                       
                  p(c_18) = x1                                      
                  p(c_19) = 0                                       
                  p(c_20) = x1                                      
                  p(c_21) = 0                                       
        
        Following rules are strictly oriented:
        Sum_sub#(xi,Cons_usual(y,m,s)) = 1 + m + s           
                                       > s                   
                                       = c_10(Sum_sub#(xi,s))
        
        
        Following rules are (at-least) weakly oriented:
                          Concat#(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u        
                                                 >= s + s*t + s*t*u + s*u                  
                                                 =  Concat#(s,Concat(t,u))                 
        
                          Concat#(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u        
                                                 >= t + t*u                                
                                                 =  Concat#(t,u)                           
        
                     Concat#(Cons_sum(xi,k,s),t) =  s + s*t + t*xi + xi                    
                                                 >= s + s*t                                
                                                 =  Concat#(s,t)                           
        
                    Concat#(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + t              
                                                 >= s + s*t                                
                                                 =  Concat#(s,t)                           
        
                    Concat#(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + t              
                                                 >= m + m*t                                
                                                 =  Term_sub#(m,t)                         
        
             Frozen#(m,Sum_constant(Left()),n,s) =  m + m*s + n + n*s + s                  
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
            Frozen#(m,Sum_constant(Right()),n,s) =  m + m*s + n + n*s + s                  
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                 Frozen#(m,Sum_term_var(xi),n,s) =  m + m*s + n + n*s + s                  
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                 Frozen#(m,Sum_term_var(xi),n,s) =  m + m*s + n + n*s + s                  
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                  Sum_sub#(xi,Cons_sum(psi,k,s)) =  psi + s                                
                                                 >= s                                      
                                                 =  c_9(Sum_sub#(xi,s))                    
        
                       Term_sub#(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s + n + n*s + s                  
                                                 =  Frozen#(m,Sum_sub(xi,s),n,s)           
        
                       Term_sub#(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= s                                      
                                                 =  Sum_sub#(xi,s)                         
        
                      Term_sub#(Term_app(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                      Term_sub#(Term_app(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                        Term_sub#(Term_inl(m),s) =  m + m*s                                
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                        Term_sub#(Term_inr(m),s) =  m + m*s                                
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                     Term_sub#(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                     Term_sub#(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                      Term_sub#(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t        
                                                 >= s + s*t                                
                                                 =  Concat#(s,t)                           
        
                      Term_sub#(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t        
                                                 >= m + m*s + m*s*t + m*t                  
                                                 =  Term_sub#(m,Concat(s,t))               
        
         Term_sub#(Term_var(x),Cons_sum(xi,k,s)) =  0                                      
                                                 >= 0                                      
                                                 =  c_18(Term_sub#(Term_var(x),s))         
        
        Term_sub#(Term_var(x),Cons_usual(y,m,s)) =  0                                      
                                                 >= 0                                      
                                                 =  c_20(Term_sub#(Term_var(x),s))         
        
                           Concat(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u + u    
                                                 >= s + s*t + s*t*u + s*u + t + t*u + u    
                                                 =  Concat(s,Concat(t,u))                  
        
                      Concat(Cons_sum(xi,k,s),t) =  s + s*t + t + t*xi + xi                
                                                 >= s + s*t + t + xi                       
                                                 =  Cons_sum(xi,k,Concat(s,t))             
        
                     Concat(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + 2*t            
                                                 >= 1 + m + m*t + s + s*t + 2*t            
                                                 =  Cons_usual(x,Term_sub(m,t),Concat(s,t))
        
                                  Concat(Id(),s) =  s                                      
                                                 >= s                                      
                                                 =  s                                      
        
              Frozen(m,Sum_constant(Left()),n,s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s + s                            
                                                 =  Term_sub(m,s)                          
        
             Frozen(m,Sum_constant(Right()),n,s) =  1 + m + m*s + n + n*s + s              
                                                 >= n + n*s + s                            
                                                 =  Term_sub(n,s)                          
        
                  Frozen(m,Sum_term_var(xi),n,s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Case(Term_sub(m,s),xi,Term_sub(n,s))   
        
                   Sum_sub(xi,Cons_sum(psi,k,s)) =  1                                      
                                                 >= 0                                      
                                                 =  Sum_constant(k)                        
        
                   Sum_sub(xi,Cons_sum(psi,k,s)) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_sub(xi,s)                          
        
                   Sum_sub(xi,Cons_usual(y,m,s)) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_sub(xi,s)                          
        
                                Sum_sub(xi,Id()) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_term_var(xi)                       
        
                        Term_sub(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Frozen(m,Sum_sub(xi,s),n,s)            
        
                       Term_sub(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Term_app(Term_sub(m,s),Term_sub(n,s))  
        
                         Term_sub(Term_inl(m),s) =  m + m*s + s                            
                                                 >= m + m*s + s                            
                                                 =  Term_inl(Term_sub(m,s))                
        
                         Term_sub(Term_inr(m),s) =  m + m*s + s                            
                                                 >= m + m*s + s                            
                                                 =  Term_inr(Term_sub(m,s))                
        
                      Term_sub(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Term_pair(Term_sub(m,s),Term_sub(n,s)) 
        
                       Term_sub(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t    
                                                 >= m + m*s + m*s*t + m*t + s + s*t + t    
                                                 =  Term_sub(m,Concat(s,t))                
        
          Term_sub(Term_var(x),Cons_sum(xi,k,s)) =  s + xi                                 
                                                 >= s                                      
                                                 =  Term_sub(Term_var(x),s)                
        
         Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + s                              
                                                 >= m                                      
                                                 =  m                                      
        
         Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + s                              
                                                 >= s                                      
                                                 =  Term_sub(Term_var(x),s)                
        
                      Term_sub(Term_var(x),Id()) =  0                                      
                                                 >= 0                                      
                                                 =  Term_var(x)                            
        
*** Step 1.b:4.b:2: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u))
            Concat#(Concat(s,t),u) -> Concat#(t,u)
            Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t)
            Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s)
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s)
            Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_inl(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_inr(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_sub(m,s),t) -> Concat#(s,t)
            Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1},
          uargs(c_18) = {1},
          uargs(c_20) = {1}
        
        Following symbols are considered usable:
          {Concat,Frozen,Sum_sub,Term_sub,Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = 1 + x1 + x3                             
                p(Concat) = x1 + x1*x2 + x2                         
              p(Cons_sum) = 1 + x1 + x3                             
            p(Cons_usual) = 1 + x2 + x3                             
                p(Frozen) = 1 + x1 + x1*x4 + x2*x4 + x3 + x3*x4 + x4
                    p(Id) = 0                                       
                  p(Left) = 0                                       
                 p(Right) = 0                                       
          p(Sum_constant) = 1                                       
               p(Sum_sub) = 1                                       
          p(Sum_term_var) = 1                                       
              p(Term_app) = 1 + x1 + x2                             
              p(Term_inl) = x1                                      
              p(Term_inr) = 1 + x1                                  
             p(Term_pair) = 1 + x1 + x2                             
              p(Term_sub) = x1 + x1*x2 + x2                         
              p(Term_var) = 0                                       
               p(Concat#) = x1 + x1*x2                              
               p(Frozen#) = x1*x2 + x1*x4 + x2*x4 + x3 + x3*x4      
              p(Sum_sub#) = x2                                      
             p(Term_sub#) = x1 + x1*x2                              
                   p(c_1) = 0                                       
                   p(c_2) = 0                                       
                   p(c_3) = 0                                       
                   p(c_4) = 0                                       
                   p(c_5) = 0                                       
                   p(c_6) = 0                                       
                   p(c_7) = 0                                       
                   p(c_8) = 0                                       
                   p(c_9) = x1                                      
                  p(c_10) = x1                                      
                  p(c_11) = 0                                       
                  p(c_12) = 0                                       
                  p(c_13) = 0                                       
                  p(c_14) = 0                                       
                  p(c_15) = 0                                       
                  p(c_16) = 0                                       
                  p(c_17) = 0                                       
                  p(c_18) = x1                                      
                  p(c_19) = 0                                       
                  p(c_20) = x1                                      
                  p(c_21) = 0                                       
        
        Following rules are strictly oriented:
        Sum_sub#(xi,Cons_sum(psi,k,s)) = 1 + psi + s        
                                       > s                  
                                       = c_9(Sum_sub#(xi,s))
        
        
        Following rules are (at-least) weakly oriented:
                          Concat#(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u        
                                                 >= s + s*t + s*t*u + s*u                  
                                                 =  Concat#(s,Concat(t,u))                 
        
                          Concat#(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u        
                                                 >= t + t*u                                
                                                 =  Concat#(t,u)                           
        
                     Concat#(Cons_sum(xi,k,s),t) =  1 + s + s*t + t + t*xi + xi            
                                                 >= s + s*t                                
                                                 =  Concat#(s,t)                           
        
                    Concat#(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + t              
                                                 >= s + s*t                                
                                                 =  Concat#(s,t)                           
        
                    Concat#(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + t              
                                                 >= m + m*t                                
                                                 =  Term_sub#(m,t)                         
        
             Frozen#(m,Sum_constant(Left()),n,s) =  m + m*s + n + n*s + s                  
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
            Frozen#(m,Sum_constant(Right()),n,s) =  m + m*s + n + n*s + s                  
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                 Frozen#(m,Sum_term_var(xi),n,s) =  m + m*s + n + n*s + s                  
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                 Frozen#(m,Sum_term_var(xi),n,s) =  m + m*s + n + n*s + s                  
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                  Sum_sub#(xi,Cons_usual(y,m,s)) =  1 + m + s                              
                                                 >= s                                      
                                                 =  c_10(Sum_sub#(xi,s))                   
        
                       Term_sub#(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s + n + n*s + s                  
                                                 =  Frozen#(m,Sum_sub(xi,s),n,s)           
        
                       Term_sub#(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= s                                      
                                                 =  Sum_sub#(xi,s)                         
        
                      Term_sub#(Term_app(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                      Term_sub#(Term_app(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                        Term_sub#(Term_inl(m),s) =  m + m*s                                
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                        Term_sub#(Term_inr(m),s) =  1 + m + m*s + s                        
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                     Term_sub#(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= m + m*s                                
                                                 =  Term_sub#(m,s)                         
        
                     Term_sub#(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + s              
                                                 >= n + n*s                                
                                                 =  Term_sub#(n,s)                         
        
                      Term_sub#(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t        
                                                 >= s + s*t                                
                                                 =  Concat#(s,t)                           
        
                      Term_sub#(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t        
                                                 >= m + m*s + m*s*t + m*t                  
                                                 =  Term_sub#(m,Concat(s,t))               
        
         Term_sub#(Term_var(x),Cons_sum(xi,k,s)) =  0                                      
                                                 >= 0                                      
                                                 =  c_18(Term_sub#(Term_var(x),s))         
        
        Term_sub#(Term_var(x),Cons_usual(y,m,s)) =  0                                      
                                                 >= 0                                      
                                                 =  c_20(Term_sub#(Term_var(x),s))         
        
                           Concat(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u + u    
                                                 >= s + s*t + s*t*u + s*u + t + t*u + u    
                                                 =  Concat(s,Concat(t,u))                  
        
                      Concat(Cons_sum(xi,k,s),t) =  1 + s + s*t + 2*t + t*xi + xi          
                                                 >= 1 + s + s*t + t + xi                   
                                                 =  Cons_sum(xi,k,Concat(s,t))             
        
                     Concat(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + 2*t            
                                                 >= 1 + m + m*t + s + s*t + 2*t            
                                                 =  Cons_usual(x,Term_sub(m,t),Concat(s,t))
        
                                  Concat(Id(),s) =  s                                      
                                                 >= s                                      
                                                 =  s                                      
        
              Frozen(m,Sum_constant(Left()),n,s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= m + m*s + s                            
                                                 =  Term_sub(m,s)                          
        
             Frozen(m,Sum_constant(Right()),n,s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= n + n*s + s                            
                                                 =  Term_sub(n,s)                          
        
                  Frozen(m,Sum_term_var(xi),n,s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Case(Term_sub(m,s),xi,Term_sub(n,s))   
        
                   Sum_sub(xi,Cons_sum(psi,k,s)) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_constant(k)                        
        
                   Sum_sub(xi,Cons_sum(psi,k,s)) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_sub(xi,s)                          
        
                   Sum_sub(xi,Cons_usual(y,m,s)) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_sub(xi,s)                          
        
                                Sum_sub(xi,Id()) =  1                                      
                                                 >= 1                                      
                                                 =  Sum_term_var(xi)                       
        
                        Term_sub(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Frozen(m,Sum_sub(xi,s),n,s)            
        
                       Term_sub(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Term_app(Term_sub(m,s),Term_sub(n,s))  
        
                         Term_sub(Term_inl(m),s) =  m + m*s + s                            
                                                 >= m + m*s + s                            
                                                 =  Term_inl(Term_sub(m,s))                
        
                         Term_sub(Term_inr(m),s) =  1 + m + m*s + 2*s                      
                                                 >= 1 + m + m*s + s                        
                                                 =  Term_inr(Term_sub(m,s))                
        
                      Term_sub(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                 >= 1 + m + m*s + n + n*s + 2*s            
                                                 =  Term_pair(Term_sub(m,s),Term_sub(n,s)) 
        
                       Term_sub(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t    
                                                 >= m + m*s + m*s*t + m*t + s + s*t + t    
                                                 =  Term_sub(m,Concat(s,t))                
        
          Term_sub(Term_var(x),Cons_sum(xi,k,s)) =  1 + s + xi                             
                                                 >= s                                      
                                                 =  Term_sub(Term_var(x),s)                
        
         Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + s                              
                                                 >= m                                      
                                                 =  m                                      
        
         Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + s                              
                                                 >= s                                      
                                                 =  Term_sub(Term_var(x),s)                
        
                      Term_sub(Term_var(x),Id()) =  0                                      
                                                 >= 0                                      
                                                 =  Term_var(x)                            
        
*** Step 1.b:4.b:3: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u))
            Concat#(Concat(s,t),u) -> Concat#(t,u)
            Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t)
            Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s)
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s)
            Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_inl(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_inr(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_sub(m,s),t) -> Concat#(s,t)
            Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1},
          uargs(c_18) = {1},
          uargs(c_20) = {1}
        
        Following symbols are considered usable:
          {Concat,Frozen,Sum_sub,Term_sub,Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = 1 + x1 + x2 + x3                         
                p(Concat) = x1 + x1*x2 + x2                          
              p(Cons_sum) = x1 + x3                                  
            p(Cons_usual) = 1 + x2 + x3                              
                p(Frozen) = x1 + x1*x4 + x2 + x2*x4 + x3 + x3*x4 + x4
                    p(Id) = 0                                        
                  p(Left) = 0                                        
                 p(Right) = 0                                        
          p(Sum_constant) = 0                                        
               p(Sum_sub) = 1 + x1                                   
          p(Sum_term_var) = 1 + x1                                   
              p(Term_app) = 1 + x1 + x2                              
              p(Term_inl) = x1                                       
              p(Term_inr) = x1                                       
             p(Term_pair) = 1 + x1 + x2                              
              p(Term_sub) = x1 + x1*x2 + x2                          
              p(Term_var) = 0                                        
               p(Concat#) = x1 + x1*x2                               
               p(Frozen#) = x1 + x1*x4 + x2*x4 + x3 + x3*x4 + x4     
              p(Sum_sub#) = 0                                        
             p(Term_sub#) = x1 + x1*x2 + x2                          
                   p(c_1) = 0                                        
                   p(c_2) = 0                                        
                   p(c_3) = 0                                        
                   p(c_4) = 0                                        
                   p(c_5) = 0                                        
                   p(c_6) = 0                                        
                   p(c_7) = 0                                        
                   p(c_8) = 0                                        
                   p(c_9) = x1                                       
                  p(c_10) = x1                                       
                  p(c_11) = 0                                        
                  p(c_12) = 0                                        
                  p(c_13) = 0                                        
                  p(c_14) = 0                                        
                  p(c_15) = 0                                        
                  p(c_16) = 0                                        
                  p(c_17) = 0                                        
                  p(c_18) = x1                                       
                  p(c_19) = 0                                        
                  p(c_20) = x1                                       
                  p(c_21) = 0                                        
        
        Following rules are strictly oriented:
        Term_sub#(Term_var(x),Cons_usual(y,m,s)) = 1 + m + s                     
                                                 > s                             
                                                 = c_20(Term_sub#(Term_var(x),s))
        
        
        Following rules are (at-least) weakly oriented:
                         Concat#(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u        
                                                >= s + s*t + s*t*u + s*u                  
                                                =  Concat#(s,Concat(t,u))                 
        
                         Concat#(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u        
                                                >= t + t*u                                
                                                =  Concat#(t,u)                           
        
                    Concat#(Cons_sum(xi,k,s),t) =  s + s*t + t*xi + xi                    
                                                >= s + s*t                                
                                                =  Concat#(s,t)                           
        
                   Concat#(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + t              
                                                >= s + s*t                                
                                                =  Concat#(s,t)                           
        
                   Concat#(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + t              
                                                >= m + m*t + t                            
                                                =  Term_sub#(m,t)                         
        
            Frozen#(m,Sum_constant(Left()),n,s) =  m + m*s + n + n*s + s                  
                                                >= m + m*s + s                            
                                                =  Term_sub#(m,s)                         
        
           Frozen#(m,Sum_constant(Right()),n,s) =  m + m*s + n + n*s + s                  
                                                >= n + n*s + s                            
                                                =  Term_sub#(n,s)                         
        
                Frozen#(m,Sum_term_var(xi),n,s) =  m + m*s + n + n*s + 2*s + s*xi         
                                                >= m + m*s + s                            
                                                =  Term_sub#(m,s)                         
        
                Frozen#(m,Sum_term_var(xi),n,s) =  m + m*s + n + n*s + 2*s + s*xi         
                                                >= n + n*s + s                            
                                                =  Term_sub#(n,s)                         
        
                 Sum_sub#(xi,Cons_sum(psi,k,s)) =  0                                      
                                                >= 0                                      
                                                =  c_9(Sum_sub#(xi,s))                    
        
                 Sum_sub#(xi,Cons_usual(y,m,s)) =  0                                      
                                                >= 0                                      
                                                =  c_10(Sum_sub#(xi,s))                   
        
                      Term_sub#(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s + s*xi + xi
                                                >= m + m*s + n + n*s + 2*s + s*xi         
                                                =  Frozen#(m,Sum_sub(xi,s),n,s)           
        
                      Term_sub#(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s + s*xi + xi
                                                >= 0                                      
                                                =  Sum_sub#(xi,s)                         
        
                     Term_sub#(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                >= m + m*s + s                            
                                                =  Term_sub#(m,s)                         
        
                     Term_sub#(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                >= n + n*s + s                            
                                                =  Term_sub#(n,s)                         
        
                       Term_sub#(Term_inl(m),s) =  m + m*s + s                            
                                                >= m + m*s + s                            
                                                =  Term_sub#(m,s)                         
        
                       Term_sub#(Term_inr(m),s) =  m + m*s + s                            
                                                >= m + m*s + s                            
                                                =  Term_sub#(m,s)                         
        
                    Term_sub#(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                >= m + m*s + s                            
                                                =  Term_sub#(m,s)                         
        
                    Term_sub#(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                >= n + n*s + s                            
                                                =  Term_sub#(n,s)                         
        
                     Term_sub#(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t    
                                                >= s + s*t                                
                                                =  Concat#(s,t)                           
        
                     Term_sub#(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t    
                                                >= m + m*s + m*s*t + m*t + s + s*t + t    
                                                =  Term_sub#(m,Concat(s,t))               
        
        Term_sub#(Term_var(x),Cons_sum(xi,k,s)) =  s + xi                                 
                                                >= s                                      
                                                =  c_18(Term_sub#(Term_var(x),s))         
        
                          Concat(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u + u    
                                                >= s + s*t + s*t*u + s*u + t + t*u + u    
                                                =  Concat(s,Concat(t,u))                  
        
                     Concat(Cons_sum(xi,k,s),t) =  s + s*t + t + t*xi + xi                
                                                >= s + s*t + t + xi                       
                                                =  Cons_sum(xi,k,Concat(s,t))             
        
                    Concat(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + 2*t            
                                                >= 1 + m + m*t + s + s*t + 2*t            
                                                =  Cons_usual(x,Term_sub(m,t),Concat(s,t))
        
                                 Concat(Id(),s) =  s                                      
                                                >= s                                      
                                                =  s                                      
        
             Frozen(m,Sum_constant(Left()),n,s) =  m + m*s + n + n*s + s                  
                                                >= m + m*s + s                            
                                                =  Term_sub(m,s)                          
        
            Frozen(m,Sum_constant(Right()),n,s) =  m + m*s + n + n*s + s                  
                                                >= n + n*s + s                            
                                                =  Term_sub(n,s)                          
        
                 Frozen(m,Sum_term_var(xi),n,s) =  1 + m + m*s + n + n*s + 2*s + s*xi + xi
                                                >= 1 + m + m*s + n + n*s + 2*s + xi       
                                                =  Case(Term_sub(m,s),xi,Term_sub(n,s))   
        
                  Sum_sub(xi,Cons_sum(psi,k,s)) =  1 + xi                                 
                                                >= 0                                      
                                                =  Sum_constant(k)                        
        
                  Sum_sub(xi,Cons_sum(psi,k,s)) =  1 + xi                                 
                                                >= 1 + xi                                 
                                                =  Sum_sub(xi,s)                          
        
                  Sum_sub(xi,Cons_usual(y,m,s)) =  1 + xi                                 
                                                >= 1 + xi                                 
                                                =  Sum_sub(xi,s)                          
        
                               Sum_sub(xi,Id()) =  1 + xi                                 
                                                >= 1 + xi                                 
                                                =  Sum_term_var(xi)                       
        
                       Term_sub(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s + s*xi + xi
                                                >= 1 + m + m*s + n + n*s + 2*s + s*xi + xi
                                                =  Frozen(m,Sum_sub(xi,s),n,s)            
        
                      Term_sub(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                >= 1 + m + m*s + n + n*s + 2*s            
                                                =  Term_app(Term_sub(m,s),Term_sub(n,s))  
        
                        Term_sub(Term_inl(m),s) =  m + m*s + s                            
                                                >= m + m*s + s                            
                                                =  Term_inl(Term_sub(m,s))                
        
                        Term_sub(Term_inr(m),s) =  m + m*s + s                            
                                                >= m + m*s + s                            
                                                =  Term_inr(Term_sub(m,s))                
        
                     Term_sub(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s            
                                                >= 1 + m + m*s + n + n*s + 2*s            
                                                =  Term_pair(Term_sub(m,s),Term_sub(n,s)) 
        
                      Term_sub(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t    
                                                >= m + m*s + m*s*t + m*t + s + s*t + t    
                                                =  Term_sub(m,Concat(s,t))                
        
         Term_sub(Term_var(x),Cons_sum(xi,k,s)) =  s + xi                                 
                                                >= s                                      
                                                =  Term_sub(Term_var(x),s)                
        
        Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + s                              
                                                >= m                                      
                                                =  m                                      
        
        Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + s                              
                                                >= s                                      
                                                =  Term_sub(Term_var(x),s)                
        
                     Term_sub(Term_var(x),Id()) =  0                                      
                                                >= 0                                      
                                                =  Term_var(x)                            
        
*** Step 1.b:4.b:4: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
        - Weak DPs:
            Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u))
            Concat#(Concat(s,t),u) -> Concat#(t,u)
            Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t)
            Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s)
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s)
            Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_inl(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_inr(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_sub(m,s),t) -> Concat#(s,t)
            Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1},
          uargs(c_18) = {1},
          uargs(c_20) = {1}
        
        Following symbols are considered usable:
          {Concat,Frozen,Sum_sub,Term_sub,Concat#,Frozen#,Sum_sub#,Term_sub#}
        TcT has computed the following interpretation:
                  p(Case) = 1 + x1 + x3                                          
                p(Concat) = x1 + x1*x2 + x2                                      
              p(Cons_sum) = 1 + x1 + x3                                          
            p(Cons_usual) = 1 + x1 + x2 + x3                                     
                p(Frozen) = x1 + x1*x4 + x2*x4 + x2^2 + x3 + x3*x4 + x4          
                    p(Id) = 0                                                    
                  p(Left) = 0                                                    
                 p(Right) = 0                                                    
          p(Sum_constant) = 1                                                    
               p(Sum_sub) = 1                                                    
          p(Sum_term_var) = 1                                                    
              p(Term_app) = 1 + x1 + x2                                          
              p(Term_inl) = x1                                                   
              p(Term_inr) = x1                                                   
             p(Term_pair) = 1 + x1 + x2                                          
              p(Term_sub) = x1 + x1*x2 + x2                                      
              p(Term_var) = x1                                                   
               p(Concat#) = x1*x2 + x1^2                                         
               p(Frozen#) = x1 + x1*x2 + x1*x4 + x1^2 + x2*x4 + x3 + x3*x4 + x3^2
              p(Sum_sub#) = x2                                                   
             p(Term_sub#) = x1 + x1*x2 + x1^2 + x2                               
                   p(c_1) = 0                                                    
                   p(c_2) = 0                                                    
                   p(c_3) = 0                                                    
                   p(c_4) = 0                                                    
                   p(c_5) = 0                                                    
                   p(c_6) = 0                                                    
                   p(c_7) = 0                                                    
                   p(c_8) = 0                                                    
                   p(c_9) = 1 + x1                                               
                  p(c_10) = 1 + x1                                               
                  p(c_11) = 0                                                    
                  p(c_12) = 0                                                    
                  p(c_13) = 0                                                    
                  p(c_14) = 0                                                    
                  p(c_15) = 0                                                    
                  p(c_16) = 0                                                    
                  p(c_17) = 0                                                    
                  p(c_18) = x1                                                   
                  p(c_19) = 0                                                    
                  p(c_20) = x1                                                   
                  p(c_21) = 0                                                    
        
        Following rules are strictly oriented:
        Term_sub#(Term_var(x),Cons_sum(xi,k,s)) = 1 + s + s*x + 2*x + x*xi + x^2 + xi
                                                > s + s*x + x + x^2                  
                                                = c_18(Term_sub#(Term_var(x),s))     
        
        
        Following rules are (at-least) weakly oriented:
                          Concat#(Concat(s,t),u) =  2*s*t + s*t*u + 2*s*t^2 + s*u + s^2 + 2*s^2*t + s^2*t^2 + t*u + t^2                
                                                 >= s*t + s*t*u + s*u + s^2                                                            
                                                 =  Concat#(s,Concat(t,u))                                                             
        
                          Concat#(Concat(s,t),u) =  2*s*t + s*t*u + 2*s*t^2 + s*u + s^2 + 2*s^2*t + s^2*t^2 + t*u + t^2                
                                                 >= t*u + t^2                                                                          
                                                 =  Concat#(t,u)                                                                       
        
                     Concat#(Cons_sum(xi,k,s),t) =  1 + 2*s + s*t + 2*s*xi + s^2 + t + t*xi + 2*xi + xi^2                              
                                                 >= s*t + s^2                                                                          
                                                 =  Concat#(s,t)                                                                       
        
                    Concat#(Cons_usual(x,m,s),t) =  1 + 2*m + 2*m*s + m*t + 2*m*x + m^2 + 2*s + s*t + 2*s*x + s^2 + t + t*x + 2*x + x^2
                                                 >= s*t + s^2                                                                          
                                                 =  Concat#(s,t)                                                                       
        
                    Concat#(Cons_usual(x,m,s),t) =  1 + 2*m + 2*m*s + m*t + 2*m*x + m^2 + 2*s + s*t + 2*s*x + s^2 + t + t*x + 2*x + x^2
                                                 >= m + m*t + m^2 + t                                                                  
                                                 =  Term_sub#(m,t)                                                                     
        
             Frozen#(m,Sum_constant(Left()),n,s) =  2*m + m*s + m^2 + n + n*s + n^2 + s                                                
                                                 >= m + m*s + m^2 + s                                                                  
                                                 =  Term_sub#(m,s)                                                                     
        
            Frozen#(m,Sum_constant(Right()),n,s) =  2*m + m*s + m^2 + n + n*s + n^2 + s                                                
                                                 >= n + n*s + n^2 + s                                                                  
                                                 =  Term_sub#(n,s)                                                                     
        
                 Frozen#(m,Sum_term_var(xi),n,s) =  2*m + m*s + m^2 + n + n*s + n^2 + s                                                
                                                 >= m + m*s + m^2 + s                                                                  
                                                 =  Term_sub#(m,s)                                                                     
        
                 Frozen#(m,Sum_term_var(xi),n,s) =  2*m + m*s + m^2 + n + n*s + n^2 + s                                                
                                                 >= n + n*s + n^2 + s                                                                  
                                                 =  Term_sub#(n,s)                                                                     
        
                  Sum_sub#(xi,Cons_sum(psi,k,s)) =  1 + psi + s                                                                        
                                                 >= 1 + s                                                                              
                                                 =  c_9(Sum_sub#(xi,s))                                                                
        
                  Sum_sub#(xi,Cons_usual(y,m,s)) =  1 + m + s + y                                                                      
                                                 >= 1 + s                                                                              
                                                 =  c_10(Sum_sub#(xi,s))                                                               
        
                       Term_sub#(Case(m,xi,n),s) =  2 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                
                                                 >= 2*m + m*s + m^2 + n + n*s + n^2 + s                                                
                                                 =  Frozen#(m,Sum_sub(xi,s),n,s)                                                       
        
                       Term_sub#(Case(m,xi,n),s) =  2 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                
                                                 >= s                                                                                  
                                                 =  Sum_sub#(xi,s)                                                                     
        
                      Term_sub#(Term_app(m,n),s) =  2 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                
                                                 >= m + m*s + m^2 + s                                                                  
                                                 =  Term_sub#(m,s)                                                                     
        
                      Term_sub#(Term_app(m,n),s) =  2 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                
                                                 >= n + n*s + n^2 + s                                                                  
                                                 =  Term_sub#(n,s)                                                                     
        
                        Term_sub#(Term_inl(m),s) =  m + m*s + m^2 + s                                                                  
                                                 >= m + m*s + m^2 + s                                                                  
                                                 =  Term_sub#(m,s)                                                                     
        
                        Term_sub#(Term_inr(m),s) =  m + m*s + m^2 + s                                                                  
                                                 >= m + m*s + m^2 + s                                                                  
                                                 =  Term_sub#(m,s)                                                                     
        
                     Term_sub#(Term_pair(m,n),s) =  2 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                
                                                 >= m + m*s + m^2 + s                                                                  
                                                 =  Term_sub#(m,s)                                                                     
        
                     Term_sub#(Term_pair(m,n),s) =  2 + 3*m + 2*m*n + m*s + m^2 + 3*n + n*s + n^2 + 2*s                                
                                                 >= n + n*s + n^2 + s                                                                  
                                                 =  Term_sub#(n,s)                                                                     
        
                      Term_sub#(Term_sub(m,s),t) =  m + 3*m*s + m*s*t + 2*m*s^2 + m*t + m^2 + 2*m^2*s + m^2*s^2 + s + s*t + s^2 + t    
                                                 >= s*t + s^2                                                                          
                                                 =  Concat#(s,t)                                                                       
        
                      Term_sub#(Term_sub(m,s),t) =  m + 3*m*s + m*s*t + 2*m*s^2 + m*t + m^2 + 2*m^2*s + m^2*s^2 + s + s*t + s^2 + t    
                                                 >= m + m*s + m*s*t + m*t + m^2 + s + s*t + t                                          
                                                 =  Term_sub#(m,Concat(s,t))                                                           
        
        Term_sub#(Term_var(x),Cons_usual(y,m,s)) =  1 + m + m*x + s + s*x + 2*x + x*y + x^2 + y                                        
                                                 >= s + s*x + x + x^2                                                                  
                                                 =  c_20(Term_sub#(Term_var(x),s))                                                     
        
                           Concat(Concat(s,t),u) =  s + s*t + s*t*u + s*u + t + t*u + u                                                
                                                 >= s + s*t + s*t*u + s*u + t + t*u + u                                                
                                                 =  Concat(s,Concat(t,u))                                                              
        
                      Concat(Cons_sum(xi,k,s),t) =  1 + s + s*t + 2*t + t*xi + xi                                                      
                                                 >= 1 + s + s*t + t + xi                                                               
                                                 =  Cons_sum(xi,k,Concat(s,t))                                                         
        
                     Concat(Cons_usual(x,m,s),t) =  1 + m + m*t + s + s*t + 2*t + t*x + x                                              
                                                 >= 1 + m + m*t + s + s*t + 2*t + x                                                    
                                                 =  Cons_usual(x,Term_sub(m,t),Concat(s,t))                                            
        
                                  Concat(Id(),s) =  s                                                                                  
                                                 >= s                                                                                  
                                                 =  s                                                                                  
        
              Frozen(m,Sum_constant(Left()),n,s) =  1 + m + m*s + n + n*s + 2*s                                                        
                                                 >= m + m*s + s                                                                        
                                                 =  Term_sub(m,s)                                                                      
        
             Frozen(m,Sum_constant(Right()),n,s) =  1 + m + m*s + n + n*s + 2*s                                                        
                                                 >= n + n*s + s                                                                        
                                                 =  Term_sub(n,s)                                                                      
        
                  Frozen(m,Sum_term_var(xi),n,s) =  1 + m + m*s + n + n*s + 2*s                                                        
                                                 >= 1 + m + m*s + n + n*s + 2*s                                                        
                                                 =  Case(Term_sub(m,s),xi,Term_sub(n,s))                                               
        
                   Sum_sub(xi,Cons_sum(psi,k,s)) =  1                                                                                  
                                                 >= 1                                                                                  
                                                 =  Sum_constant(k)                                                                    
        
                   Sum_sub(xi,Cons_sum(psi,k,s)) =  1                                                                                  
                                                 >= 1                                                                                  
                                                 =  Sum_sub(xi,s)                                                                      
        
                   Sum_sub(xi,Cons_usual(y,m,s)) =  1                                                                                  
                                                 >= 1                                                                                  
                                                 =  Sum_sub(xi,s)                                                                      
        
                                Sum_sub(xi,Id()) =  1                                                                                  
                                                 >= 1                                                                                  
                                                 =  Sum_term_var(xi)                                                                   
        
                        Term_sub(Case(m,xi,n),s) =  1 + m + m*s + n + n*s + 2*s                                                        
                                                 >= 1 + m + m*s + n + n*s + 2*s                                                        
                                                 =  Frozen(m,Sum_sub(xi,s),n,s)                                                        
        
                       Term_sub(Term_app(m,n),s) =  1 + m + m*s + n + n*s + 2*s                                                        
                                                 >= 1 + m + m*s + n + n*s + 2*s                                                        
                                                 =  Term_app(Term_sub(m,s),Term_sub(n,s))                                              
        
                         Term_sub(Term_inl(m),s) =  m + m*s + s                                                                        
                                                 >= m + m*s + s                                                                        
                                                 =  Term_inl(Term_sub(m,s))                                                            
        
                         Term_sub(Term_inr(m),s) =  m + m*s + s                                                                        
                                                 >= m + m*s + s                                                                        
                                                 =  Term_inr(Term_sub(m,s))                                                            
        
                      Term_sub(Term_pair(m,n),s) =  1 + m + m*s + n + n*s + 2*s                                                        
                                                 >= 1 + m + m*s + n + n*s + 2*s                                                        
                                                 =  Term_pair(Term_sub(m,s),Term_sub(n,s))                                             
        
                       Term_sub(Term_sub(m,s),t) =  m + m*s + m*s*t + m*t + s + s*t + t                                                
                                                 >= m + m*s + m*s*t + m*t + s + s*t + t                                                
                                                 =  Term_sub(m,Concat(s,t))                                                            
        
          Term_sub(Term_var(x),Cons_sum(xi,k,s)) =  1 + s + s*x + 2*x + x*xi + xi                                                      
                                                 >= s + s*x + x                                                                        
                                                 =  Term_sub(Term_var(x),s)                                                            
        
         Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + m*x + s + s*x + 2*x + x*y + y                                              
                                                 >= m                                                                                  
                                                 =  m                                                                                  
        
         Term_sub(Term_var(x),Cons_usual(y,m,s)) =  1 + m + m*x + s + s*x + 2*x + x*y + y                                              
                                                 >= s + s*x + x                                                                        
                                                 =  Term_sub(Term_var(x),s)                                                            
        
                      Term_sub(Term_var(x),Id()) =  x                                                                                  
                                                 >= x                                                                                  
                                                 =  Term_var(x)                                                                        
        
*** Step 1.b:4.b:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            Concat#(Concat(s,t),u) -> Concat#(s,Concat(t,u))
            Concat#(Concat(s,t),u) -> Concat#(t,u)
            Concat#(Cons_sum(xi,k,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Concat#(s,t)
            Concat#(Cons_usual(x,m,s),t) -> Term_sub#(m,t)
            Frozen#(m,Sum_constant(Left()),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_constant(Right()),n,s) -> Term_sub#(n,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(m,s)
            Frozen#(m,Sum_term_var(xi),n,s) -> Term_sub#(n,s)
            Sum_sub#(xi,Cons_sum(psi,k,s)) -> c_9(Sum_sub#(xi,s))
            Sum_sub#(xi,Cons_usual(y,m,s)) -> c_10(Sum_sub#(xi,s))
            Term_sub#(Case(m,xi,n),s) -> Frozen#(m,Sum_sub(xi,s),n,s)
            Term_sub#(Case(m,xi,n),s) -> Sum_sub#(xi,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_app(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_inl(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_inr(m),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(m,s)
            Term_sub#(Term_pair(m,n),s) -> Term_sub#(n,s)
            Term_sub#(Term_sub(m,s),t) -> Concat#(s,t)
            Term_sub#(Term_sub(m,s),t) -> Term_sub#(m,Concat(s,t))
            Term_sub#(Term_var(x),Cons_sum(xi,k,s)) -> c_18(Term_sub#(Term_var(x),s))
            Term_sub#(Term_var(x),Cons_usual(y,m,s)) -> c_20(Term_sub#(Term_var(x),s))
        - Weak TRS:
            Concat(Concat(s,t),u) -> Concat(s,Concat(t,u))
            Concat(Cons_sum(xi,k,s),t) -> Cons_sum(xi,k,Concat(s,t))
            Concat(Cons_usual(x,m,s),t) -> Cons_usual(x,Term_sub(m,t),Concat(s,t))
            Concat(Id(),s) -> s
            Frozen(m,Sum_constant(Left()),n,s) -> Term_sub(m,s)
            Frozen(m,Sum_constant(Right()),n,s) -> Term_sub(n,s)
            Frozen(m,Sum_term_var(xi),n,s) -> Case(Term_sub(m,s),xi,Term_sub(n,s))
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_constant(k)
            Sum_sub(xi,Cons_sum(psi,k,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Cons_usual(y,m,s)) -> Sum_sub(xi,s)
            Sum_sub(xi,Id()) -> Sum_term_var(xi)
            Term_sub(Case(m,xi,n),s) -> Frozen(m,Sum_sub(xi,s),n,s)
            Term_sub(Term_app(m,n),s) -> Term_app(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_inl(m),s) -> Term_inl(Term_sub(m,s))
            Term_sub(Term_inr(m),s) -> Term_inr(Term_sub(m,s))
            Term_sub(Term_pair(m,n),s) -> Term_pair(Term_sub(m,s),Term_sub(n,s))
            Term_sub(Term_sub(m,s),t) -> Term_sub(m,Concat(s,t))
            Term_sub(Term_var(x),Cons_sum(xi,k,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> m
            Term_sub(Term_var(x),Cons_usual(y,m,s)) -> Term_sub(Term_var(x),s)
            Term_sub(Term_var(x),Id()) -> Term_var(x)
        - Signature:
            {Concat/2,Frozen/4,Sum_sub/2,Term_sub/2,Concat#/2,Frozen#/4,Sum_sub#/2,Term_sub#/2} / {Case/3,Cons_sum/3
            ,Cons_usual/3,Id/0,Left/0,Right/0,Sum_constant/1,Sum_term_var/1,Term_app/2,Term_inl/1,Term_inr/1,Term_pair/2
            ,Term_var/1,c_1/2,c_2/1,c_3/2,c_4/0,c_5/1,c_6/1,c_7/2,c_8/0,c_9/1,c_10/1,c_11/0,c_12/2,c_13/2,c_14/1,c_15/1
            ,c_16/2,c_17/2,c_18/1,c_19/0,c_20/1,c_21/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {Concat#,Frozen#,Sum_sub#
            ,Term_sub#} and constructors {Case,Cons_sum,Cons_usual,Id,Left,Right,Sum_constant,Sum_term_var,Term_app
            ,Term_inl,Term_inr,Term_pair,Term_var}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^3))