WORST_CASE(?,O(1)) * Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1} / {a/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,f} and constructors {a,g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1} / {a/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {b,f} and constructors {a,g} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) Weak DPs and mark the set of starting terms. * Step 3: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) - Weak TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2,3}. Here rules are labelled as follows: 1: b#(X) -> c_1() 2: f#(a(g(X))) -> c_2(b#(X)) 3: f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) * Step 4: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(a(g(X))) -> c_2(b#(X)) f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) - Weak DPs: b#(X) -> c_1() - Weak TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: f#(a(g(X))) -> c_2(b#(X)) 2: f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) 3: b#(X) -> c_1() * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) - Weak DPs: b#(X) -> c_1() f#(a(g(X))) -> c_2(b#(X)) - Weak TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,g} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) -->_3 f#(a(g(X))) -> c_2(b#(X)):3 -->_1 f#(a(g(X))) -> c_2(b#(X)):3 -->_2 b#(X) -> c_1():2 -->_3 f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)):1 2:W:b#(X) -> c_1() 3:W:f#(a(g(X))) -> c_2(b#(X)) -->_1 b#(X) -> c_1():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(a(g(X))) -> c_2(b#(X)) 2: b#(X) -> c_1() * Step 6: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) - Weak TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/3} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,g} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)) -->_3 f#(f(X)) -> c_3(f#(a(b(f(X)))),b#(f(X)),f#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(f(X)) -> c_3(f#(X)) * Step 7: UsableRules WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: f#(f(X)) -> c_3(f#(X)) - Weak TRS: b(X) -> a(X) f(a(g(X))) -> b(X) f(f(X)) -> f(a(b(f(X)))) - Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,g} + Applied Processor: UsableRules + Details: No rule is usable, rules are removed from the input problem. * Step 8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {b/1,f/1,b#/1,f#/1} / {a/1,g/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {b#,f#} and constructors {a,g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))