WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,2,g,i} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,2,g,i} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,z){x -> g(x,y)} = f(g(x,y),z) ->^+ g(f(x,z),f(y,z)) = C[f(x,z) = f(x,z){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2} / {0/0,1/0,2/0,g/2,i/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,2,g,i} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) f#(i(x),y) -> c_7() Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) f#(i(x),y) -> c_7() - Weak TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2,3,4,7} by application of Pre({1,2,3,4,7}) = {5,6}. Here rules are labelled as follows: 1: f#(x,0()) -> c_1() 2: f#(0(),y) -> c_2() 3: f#(1(),g(x,y)) -> c_3() 4: f#(2(),g(x,y)) -> c_4() 5: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) 6: f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) 7: f#(i(x),y) -> c_7() ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) - Weak DPs: f#(x,0()) -> c_1() f#(0(),y) -> c_2() f#(1(),g(x,y)) -> c_3() f#(2(),g(x,y)) -> c_4() f#(i(x),y) -> c_7() - Weak TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) -->_2 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_1 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_2 f#(i(x),y) -> c_7():7 -->_1 f#(i(x),y) -> c_7():7 -->_2 f#(2(),g(x,y)) -> c_4():6 -->_1 f#(2(),g(x,y)) -> c_4():6 -->_2 f#(1(),g(x,y)) -> c_3():5 -->_1 f#(1(),g(x,y)) -> c_3():5 -->_2 f#(0(),y) -> c_2():4 -->_1 f#(0(),y) -> c_2():4 -->_2 f#(x,0()) -> c_1():3 -->_1 f#(x,0()) -> c_1():3 -->_2 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 -->_1 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 2:S:f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) -->_2 f#(i(x),y) -> c_7():7 -->_1 f#(i(x),y) -> c_7():7 -->_2 f#(2(),g(x,y)) -> c_4():6 -->_1 f#(2(),g(x,y)) -> c_4():6 -->_2 f#(1(),g(x,y)) -> c_3():5 -->_1 f#(1(),g(x,y)) -> c_3():5 -->_2 f#(0(),y) -> c_2():4 -->_1 f#(0(),y) -> c_2():4 -->_2 f#(x,0()) -> c_1():3 -->_1 f#(x,0()) -> c_1():3 -->_2 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_1 f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)):2 -->_2 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 -->_1 f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)):1 3:W:f#(x,0()) -> c_1() 4:W:f#(0(),y) -> c_2() 5:W:f#(1(),g(x,y)) -> c_3() 6:W:f#(2(),g(x,y)) -> c_4() 7:W:f#(i(x),y) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(x,0()) -> c_1() 4: f#(0(),y) -> c_2() 5: f#(1(),g(x,y)) -> c_3() 6: f#(2(),g(x,y)) -> c_4() 7: f#(i(x),y) -> c_7() ** Step 1.b:4: NaturalPI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) - Weak TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(c_5) = {1,2}, uargs(c_6) = {1,2} Following symbols are considered usable: {f#} TcT has computed the following interpretation: p(0) = 0 p(1) = 2 p(2) = 0 p(f) = 3 + x1 + x2 p(g) = 2 + x1 + x2 p(i) = x1 p(f#) = 4*x1 p(c_1) = 1 p(c_2) = 0 p(c_3) = 4 p(c_4) = 2 p(c_5) = 2 + x1 + x2 p(c_6) = 1 + x1 + x2 p(c_7) = 2 Following rules are strictly oriented: f#(f(x,y),z) = 12 + 4*x + 4*y > 2 + 4*x + 4*y = c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) = 8 + 4*x + 4*y > 1 + 4*x + 4*y = c_6(f#(x,z),f#(y,z)) Following rules are (at-least) weakly oriented: ** Step 1.b:5: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(f(x,y),z) -> c_5(f#(x,f(y,z)),f#(y,z)) f#(g(x,y),z) -> c_6(f#(x,z),f#(y,z)) - Weak TRS: f(x,0()) -> x f(0(),y) -> y f(1(),g(x,y)) -> x f(2(),g(x,y)) -> y f(f(x,y),z) -> f(x,f(y,z)) f(g(x,y),z) -> g(f(x,z),f(y,z)) f(i(x),y) -> i(x) - Signature: {f/2,f#/2} / {0/0,1/0,2/0,g/2,i/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/2,c_6/2,c_7/0} - Obligation: innermost runtime complexity wrt. defined symbols {f#} and constructors {0,1,2,g,i} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))