WORST_CASE(?,O(1))
* Step 1: Sum WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1} / {a/1,e/1,u/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b,c,d,v} and constructors {a,e,u}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DependencyPairs WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1} / {a/1,e/1,u/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b,c,d,v} and constructors {a,e,u}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          b#(u(x)) -> c_1()
          c#(u(x)) -> c_2(b#(x))
          d#(x) -> c_3()
          d#(u(x)) -> c_4(c#(x))
          v#(e(x)) -> c_5()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 3: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            b#(u(x)) -> c_1()
            c#(u(x)) -> c_2(b#(x))
            d#(x) -> c_3()
            d#(u(x)) -> c_4(c#(x))
            v#(e(x)) -> c_5()
        - Weak TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,5}
        by application of
          Pre({1,3,5}) = {2}.
        Here rules are labelled as follows:
          1: b#(u(x)) -> c_1()
          2: c#(u(x)) -> c_2(b#(x))
          3: d#(x) -> c_3()
          4: d#(u(x)) -> c_4(c#(x))
          5: v#(e(x)) -> c_5()
* Step 4: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            c#(u(x)) -> c_2(b#(x))
            d#(u(x)) -> c_4(c#(x))
        - Weak DPs:
            b#(u(x)) -> c_1()
            d#(x) -> c_3()
            v#(e(x)) -> c_5()
        - Weak TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {2}.
        Here rules are labelled as follows:
          1: c#(u(x)) -> c_2(b#(x))
          2: d#(u(x)) -> c_4(c#(x))
          3: b#(u(x)) -> c_1()
          4: d#(x) -> c_3()
          5: v#(e(x)) -> c_5()
* Step 5: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            d#(u(x)) -> c_4(c#(x))
        - Weak DPs:
            b#(u(x)) -> c_1()
            c#(u(x)) -> c_2(b#(x))
            d#(x) -> c_3()
            v#(e(x)) -> c_5()
        - Weak TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: d#(u(x)) -> c_4(c#(x))
          2: b#(u(x)) -> c_1()
          3: c#(u(x)) -> c_2(b#(x))
          4: d#(x) -> c_3()
          5: v#(e(x)) -> c_5()
* Step 6: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            b#(u(x)) -> c_1()
            c#(u(x)) -> c_2(b#(x))
            d#(x) -> c_3()
            d#(u(x)) -> c_4(c#(x))
            v#(e(x)) -> c_5()
        - Weak TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:b#(u(x)) -> c_1()
             
          
          2:W:c#(u(x)) -> c_2(b#(x))
             -->_1 b#(u(x)) -> c_1():1
          
          3:W:d#(x) -> c_3()
             
          
          4:W:d#(u(x)) -> c_4(c#(x))
             -->_1 c#(u(x)) -> c_2(b#(x)):2
          
          5:W:v#(e(x)) -> c_5()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: v#(e(x)) -> c_5()
          4: d#(u(x)) -> c_4(c#(x))
          3: d#(x) -> c_3()
          2: c#(u(x)) -> c_2(b#(x))
          1: b#(u(x)) -> c_1()
* Step 7: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            b(u(x)) -> a(e(x))
            c(u(x)) -> b(x)
            d(x) -> e(u(x))
            d(u(x)) -> c(x)
            v(e(x)) -> x
        - Signature:
            {b/1,c/1,d/1,v/1,b#/1,c#/1,d#/1,v#/1} / {a/1,e/1,u/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {b#,c#,d#,v#} and constructors {a,e,u}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(1))