WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,f,g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,f,g} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: mark(x){x -> g(x)} = mark(g(x)) ->^+ g(mark(x)) = C[mark(x) = mark(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1} / {a/0,f/1,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f,mark} and constructors {a,f,g} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs a__f#(X) -> c_1() a__f#(f(a())) -> c_2(a__f#(g(f(a())))) mark#(a()) -> c_3() mark#(f(X)) -> c_4(a__f#(X)) mark#(g(X)) -> c_5(mark#(X)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__f#(X) -> c_1() a__f#(f(a())) -> c_2(a__f#(g(f(a())))) mark#(a()) -> c_3() mark#(f(X)) -> c_4(a__f#(X)) mark#(g(X)) -> c_5(mark#(X)) - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4,5}. Here rules are labelled as follows: 1: a__f#(X) -> c_1() 2: a__f#(f(a())) -> c_2(a__f#(g(f(a())))) 3: mark#(a()) -> c_3() 4: mark#(f(X)) -> c_4(a__f#(X)) 5: mark#(g(X)) -> c_5(mark#(X)) ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: a__f#(f(a())) -> c_2(a__f#(g(f(a())))) mark#(f(X)) -> c_4(a__f#(X)) mark#(g(X)) -> c_5(mark#(X)) - Weak DPs: a__f#(X) -> c_1() mark#(a()) -> c_3() - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: a__f#(f(a())) -> c_2(a__f#(g(f(a())))) 2: mark#(f(X)) -> c_4(a__f#(X)) 3: mark#(g(X)) -> c_5(mark#(X)) 4: a__f#(X) -> c_1() 5: mark#(a()) -> c_3() ** Step 1.b:4: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(f(X)) -> c_4(a__f#(X)) mark#(g(X)) -> c_5(mark#(X)) - Weak DPs: a__f#(X) -> c_1() a__f#(f(a())) -> c_2(a__f#(g(f(a())))) mark#(a()) -> c_3() - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: mark#(f(X)) -> c_4(a__f#(X)) 2: mark#(g(X)) -> c_5(mark#(X)) 3: a__f#(X) -> c_1() 4: a__f#(f(a())) -> c_2(a__f#(g(f(a())))) 5: mark#(a()) -> c_3() ** Step 1.b:5: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(g(X)) -> c_5(mark#(X)) - Weak DPs: a__f#(X) -> c_1() a__f#(f(a())) -> c_2(a__f#(g(f(a())))) mark#(a()) -> c_3() mark#(f(X)) -> c_4(a__f#(X)) - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:mark#(g(X)) -> c_5(mark#(X)) -->_1 mark#(f(X)) -> c_4(a__f#(X)):5 -->_1 mark#(a()) -> c_3():4 -->_1 mark#(g(X)) -> c_5(mark#(X)):1 2:W:a__f#(X) -> c_1() 3:W:a__f#(f(a())) -> c_2(a__f#(g(f(a())))) -->_1 a__f#(X) -> c_1():2 4:W:mark#(a()) -> c_3() 5:W:mark#(f(X)) -> c_4(a__f#(X)) -->_1 a__f#(f(a())) -> c_2(a__f#(g(f(a())))):3 -->_1 a__f#(X) -> c_1():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: mark#(a()) -> c_3() 5: mark#(f(X)) -> c_4(a__f#(X)) 3: a__f#(f(a())) -> c_2(a__f#(g(f(a())))) 2: a__f#(X) -> c_1() ** Step 1.b:6: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(g(X)) -> c_5(mark#(X)) - Weak TRS: a__f(X) -> f(X) a__f(f(a())) -> a__f(g(f(a()))) mark(a()) -> a() mark(f(X)) -> a__f(X) mark(g(X)) -> g(mark(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: mark#(g(X)) -> c_5(mark#(X)) ** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: mark#(g(X)) -> c_5(mark#(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(a) = [0] p(a__f) = [2] p(f) = [1] x1 + [0] p(g) = [1] x1 + [3] p(mark) = [0] p(a__f#) = [0] p(mark#) = [6] x1 + [0] p(c_1) = [8] p(c_2) = [1] x1 + [0] p(c_3) = [8] p(c_4) = [1] p(c_5) = [1] x1 + [5] Following rules are strictly oriented: mark#(g(X)) = [6] X + [18] > [6] X + [5] = c_5(mark#(X)) Following rules are (at-least) weakly oriented: Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: mark#(g(X)) -> c_5(mark#(X)) - Signature: {a__f/1,mark/1,a__f#/1,mark#/1} / {a/0,f/1,g/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1} - Obligation: innermost runtime complexity wrt. defined symbols {a__f#,mark#} and constructors {a,f,g} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))