WORST_CASE(Omega(n^1),O(n^1))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__f(x)} =
            activate(n__f(x)) ->^+ f(activate(x))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(f) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,g,h}
        TcT has computed the following interpretation:
          p(activate) = 2*x1      
                 p(c) = 8*x1      
                 p(d) = 2*x1      
                 p(f) = x1        
                 p(g) = 0         
                 p(h) = 10 + 14*x1
              p(n__d) = x1        
              p(n__f) = x1        
              p(n__g) = 0         
        
        Following rules are strictly oriented:
        h(X) = 10 + 14*X 
             > 8*X       
             = c(n__d(X))
        
        
        Following rules are (at-least) weakly oriented:
              activate(X) =  2*X                   
                          >= X                     
                          =  X                     
        
        activate(n__d(X)) =  2*X                   
                          >= 2*X                   
                          =  d(X)                  
        
        activate(n__f(X)) =  2*X                   
                          >= 2*X                   
                          =  f(activate(X))        
        
        activate(n__g(X)) =  0                     
                          >= 0                     
                          =  g(X)                  
        
                     c(X) =  8*X                   
                          >= 4*X                   
                          =  d(activate(X))        
        
                     d(X) =  2*X                   
                          >= X                     
                          =  n__d(X)               
        
                     f(X) =  X                     
                          >= X                     
                          =  n__f(X)               
        
                  f(f(X)) =  X                     
                          >= 0                     
                          =  c(n__f(n__g(n__f(X))))
        
                     g(X) =  0                     
                          >= 0                     
                          =  n__g(X)               
        
** Step 1.b:2: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
        - Weak TRS:
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(f) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,g,h}
        TcT has computed the following interpretation:
          p(activate) = 3*x1    
                 p(c) = 3*x1    
                 p(d) = x1      
                 p(f) = 3 + x1  
                 p(g) = 0       
                 p(h) = 1 + 4*x1
              p(n__d) = x1      
              p(n__f) = 2 + x1  
              p(n__g) = 0       
        
        Following rules are strictly oriented:
        activate(n__f(X)) = 6 + 3*X       
                          > 3 + 3*X       
                          = f(activate(X))
        
                     f(X) = 3 + X         
                          > 2 + X         
                          = n__f(X)       
        
        
        Following rules are (at-least) weakly oriented:
              activate(X) =  3*X                   
                          >= X                     
                          =  X                     
        
        activate(n__d(X)) =  3*X                   
                          >= X                     
                          =  d(X)                  
        
        activate(n__g(X)) =  0                     
                          >= 0                     
                          =  g(X)                  
        
                     c(X) =  3*X                   
                          >= 3*X                   
                          =  d(activate(X))        
        
                     d(X) =  X                     
                          >= X                     
                          =  n__d(X)               
        
                  f(f(X)) =  6 + X                 
                          >= 6                     
                          =  c(n__f(n__g(n__f(X))))
        
                     g(X) =  0                     
                          >= 0                     
                          =  n__g(X)               
        
                     h(X) =  1 + 4*X               
                          >= 3*X                   
                          =  c(n__d(X))            
        
** Step 1.b:3: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
        - Weak TRS:
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(f) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,g,h}
        TcT has computed the following interpretation:
          p(activate) = 2*x1    
                 p(c) = 2 + 2*x1
                 p(d) = 2 + x1  
                 p(f) = 3 + x1  
                 p(g) = 0       
                 p(h) = 9 + 2*x1
              p(n__d) = 2 + x1  
              p(n__f) = 2 + x1  
              p(n__g) = 0       
        
        Following rules are strictly oriented:
        activate(n__d(X)) = 4 + 2*X
                          > 2 + X  
                          = d(X)   
        
        
        Following rules are (at-least) weakly oriented:
              activate(X) =  2*X                   
                          >= X                     
                          =  X                     
        
        activate(n__f(X)) =  4 + 2*X               
                          >= 3 + 2*X               
                          =  f(activate(X))        
        
        activate(n__g(X)) =  0                     
                          >= 0                     
                          =  g(X)                  
        
                     c(X) =  2 + 2*X               
                          >= 2 + 2*X               
                          =  d(activate(X))        
        
                     d(X) =  2 + X                 
                          >= 2 + X                 
                          =  n__d(X)               
        
                     f(X) =  3 + X                 
                          >= 2 + X                 
                          =  n__f(X)               
        
                  f(f(X)) =  6 + X                 
                          >= 6                     
                          =  c(n__f(n__g(n__f(X))))
        
                     g(X) =  0                     
                          >= 0                     
                          =  n__g(X)               
        
                     h(X) =  9 + 2*X               
                          >= 6 + 2*X               
                          =  c(n__d(X))            
        
** Step 1.b:4: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
        - Weak TRS:
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            f(X) -> n__f(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(f) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,g,h}
        TcT has computed the following interpretation:
          p(activate) = 1 + 8*x1 
                 p(c) = 2 + 12*x1
                 p(d) = x1       
                 p(f) = 8 + x1   
                 p(g) = 1        
                 p(h) = 5 + 12*x1
              p(n__d) = x1       
              p(n__f) = 1 + x1   
              p(n__g) = 0        
        
        Following rules are strictly oriented:
        activate(X) = 1 + 8*X               
                    > X                     
                    = X                     
        
               c(X) = 2 + 12*X              
                    > 1 + 8*X               
                    = d(activate(X))        
        
            f(f(X)) = 16 + X                
                    > 14                    
                    = c(n__f(n__g(n__f(X))))
        
               g(X) = 1                     
                    > 0                     
                    = n__g(X)               
        
        
        Following rules are (at-least) weakly oriented:
        activate(n__d(X)) =  1 + 8*X       
                          >= X             
                          =  d(X)          
        
        activate(n__f(X)) =  9 + 8*X       
                          >= 9 + 8*X       
                          =  f(activate(X))
        
        activate(n__g(X)) =  1             
                          >= 1             
                          =  g(X)          
        
                     d(X) =  X             
                          >= X             
                          =  n__d(X)       
        
                     f(X) =  8 + X         
                          >= 1 + X         
                          =  n__f(X)       
        
                     h(X) =  5 + 12*X      
                          >= 2 + 12*X      
                          =  c(n__d(X))    
        
** Step 1.b:5: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__g(X)) -> g(X)
            d(X) -> n__d(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            c(X) -> d(activate(X))
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(f) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,g,h}
        TcT has computed the following interpretation:
          p(activate) = 8*x1     
                 p(c) = 1 + 8*x1 
                 p(d) = x1       
                 p(f) = 13 + x1  
                 p(g) = 4        
                 p(h) = 8 + 11*x1
              p(n__d) = x1       
              p(n__f) = 2 + x1   
              p(n__g) = 1        
        
        Following rules are strictly oriented:
        activate(n__g(X)) = 8   
                          > 4   
                          = g(X)
        
        
        Following rules are (at-least) weakly oriented:
              activate(X) =  8*X                   
                          >= X                     
                          =  X                     
        
        activate(n__d(X)) =  8*X                   
                          >= X                     
                          =  d(X)                  
        
        activate(n__f(X)) =  16 + 8*X              
                          >= 13 + 8*X              
                          =  f(activate(X))        
        
                     c(X) =  1 + 8*X               
                          >= 8*X                   
                          =  d(activate(X))        
        
                     d(X) =  X                     
                          >= X                     
                          =  n__d(X)               
        
                     f(X) =  13 + X                
                          >= 2 + X                 
                          =  n__f(X)               
        
                  f(f(X)) =  26 + X                
                          >= 25                    
                          =  c(n__f(n__g(n__f(X))))
        
                     g(X) =  4                     
                          >= 1                     
                          =  n__g(X)               
        
                     h(X) =  8 + 11*X              
                          >= 1 + 8*X               
                          =  c(n__d(X))            
        
** Step 1.b:6: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            d(X) -> n__d(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(f) = {1}
        
        Following symbols are considered usable:
          {activate,c,d,f,g,h}
        TcT has computed the following interpretation:
          p(activate) = 2 + 8*x1  
                 p(c) = 5 + 8*x1  
                 p(d) = 3 + x1    
                 p(f) = 15 + x1   
                 p(g) = 0         
                 p(h) = 13 + 10*x1
              p(n__d) = 1 + x1    
              p(n__f) = 2 + x1    
              p(n__g) = 0         
        
        Following rules are strictly oriented:
        d(X) = 3 + X  
             > 1 + X  
             = n__d(X)
        
        
        Following rules are (at-least) weakly oriented:
              activate(X) =  2 + 8*X               
                          >= X                     
                          =  X                     
        
        activate(n__d(X)) =  10 + 8*X              
                          >= 3 + X                 
                          =  d(X)                  
        
        activate(n__f(X)) =  18 + 8*X              
                          >= 17 + 8*X              
                          =  f(activate(X))        
        
        activate(n__g(X)) =  2                     
                          >= 0                     
                          =  g(X)                  
        
                     c(X) =  5 + 8*X               
                          >= 5 + 8*X               
                          =  d(activate(X))        
        
                     f(X) =  15 + X                
                          >= 2 + X                 
                          =  n__f(X)               
        
                  f(f(X)) =  30 + X                
                          >= 21                    
                          =  c(n__f(n__g(n__f(X))))
        
                     g(X) =  0                     
                          >= 0                     
                          =  n__g(X)               
        
                     h(X) =  13 + 10*X             
                          >= 13 + 8*X              
                          =  c(n__d(X))            
        
** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__d(X)) -> d(X)
            activate(n__f(X)) -> f(activate(X))
            activate(n__g(X)) -> g(X)
            c(X) -> d(activate(X))
            d(X) -> n__d(X)
            f(X) -> n__f(X)
            f(f(X)) -> c(n__f(n__g(n__f(X))))
            g(X) -> n__g(X)
            h(X) -> c(n__d(X))
        - Signature:
            {activate/1,c/1,d/1,f/1,g/1,h/1} / {n__d/1,n__f/1,n__g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,c,d,f,g,h} and constructors {n__d,n__f,n__g}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))