WORST_CASE(?,O(1)) * Step 1: Sum WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,c,d,f,h} and constructors {g,n__d,n__f} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DependencyPairs WORST_CASE(?,O(1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,c,d,f,h} and constructors {g,n__d,n__f} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak DPs and mark the set of starting terms. * Step 3: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2 ,c_5/0,c_6/0,c_7/1,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {g,n__d,n__f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,5,6,7} by application of Pre({1,5,6,7}) = {2,3,4}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__d(X)) -> c_2(d#(X)) 3: activate#(n__f(X)) -> c_3(f#(X)) 4: c#(X) -> c_4(d#(activate(X)),activate#(X)) 5: d#(X) -> c_5() 6: f#(X) -> c_6() 7: f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) 8: h#(X) -> c_8(c#(n__d(X))) * Step 4: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) h#(X) -> c_8(c#(n__d(X))) - Weak DPs: activate#(X) -> c_1() d#(X) -> c_5() f#(X) -> c_6() f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2 ,c_5/0,c_6/0,c_7/1,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {g,n__d,n__f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3}. Here rules are labelled as follows: 1: activate#(n__d(X)) -> c_2(d#(X)) 2: activate#(n__f(X)) -> c_3(f#(X)) 3: c#(X) -> c_4(d#(activate(X)),activate#(X)) 4: h#(X) -> c_8(c#(n__d(X))) 5: activate#(X) -> c_1() 6: d#(X) -> c_5() 7: f#(X) -> c_6() 8: f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) * Step 5: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: c#(X) -> c_4(d#(activate(X)),activate#(X)) h#(X) -> c_8(c#(n__d(X))) - Weak DPs: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) d#(X) -> c_5() f#(X) -> c_6() f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2 ,c_5/0,c_6/0,c_7/1,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {g,n__d,n__f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2}. Here rules are labelled as follows: 1: c#(X) -> c_4(d#(activate(X)),activate#(X)) 2: h#(X) -> c_8(c#(n__d(X))) 3: activate#(X) -> c_1() 4: activate#(n__d(X)) -> c_2(d#(X)) 5: activate#(n__f(X)) -> c_3(f#(X)) 6: d#(X) -> c_5() 7: f#(X) -> c_6() 8: f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) * Step 6: PredecessorEstimation WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: h#(X) -> c_8(c#(n__d(X))) - Weak DPs: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2 ,c_5/0,c_6/0,c_7/1,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {g,n__d,n__f} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {}. Here rules are labelled as follows: 1: h#(X) -> c_8(c#(n__d(X))) 2: activate#(X) -> c_1() 3: activate#(n__d(X)) -> c_2(d#(X)) 4: activate#(n__f(X)) -> c_3(f#(X)) 5: c#(X) -> c_4(d#(activate(X)),activate#(X)) 6: d#(X) -> c_5() 7: f#(X) -> c_6() 8: f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) * Step 7: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(X) -> c_1() activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X)),activate#(X)) d#(X) -> c_5() f#(X) -> c_6() f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2 ,c_5/0,c_6/0,c_7/1,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {g,n__d,n__f} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:activate#(X) -> c_1() 2:W:activate#(n__d(X)) -> c_2(d#(X)) -->_1 d#(X) -> c_5():5 3:W:activate#(n__f(X)) -> c_3(f#(X)) -->_1 f#(X) -> c_6():6 4:W:c#(X) -> c_4(d#(activate(X)),activate#(X)) -->_1 d#(X) -> c_5():5 -->_2 activate#(n__f(X)) -> c_3(f#(X)):3 -->_2 activate#(n__d(X)) -> c_2(d#(X)):2 -->_2 activate#(X) -> c_1():1 5:W:d#(X) -> c_5() 6:W:f#(X) -> c_6() 7:W:f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) 8:W:h#(X) -> c_8(c#(n__d(X))) -->_1 c#(X) -> c_4(d#(activate(X)),activate#(X)):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: h#(X) -> c_8(c#(n__d(X))) 7: f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) 4: c#(X) -> c_4(d#(activate(X)),activate#(X)) 3: activate#(n__f(X)) -> c_3(f#(X)) 6: f#(X) -> c_6() 2: activate#(n__d(X)) -> c_2(d#(X)) 5: d#(X) -> c_5() 1: activate#(X) -> c_1() * Step 8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) - Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/0,c_2/1,c_3/1,c_4/2 ,c_5/0,c_6/0,c_7/1,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,c#,d#,f#,h#} and constructors {g,n__d,n__f} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(1))