WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,s,sel} and constructors {0,cons,n__from ,n__s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,s,sel} and constructors {0,cons,n__from ,n__s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__from(x)} = activate(n__from(x)) ->^+ from(activate(x)) = C[activate(x) = activate(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2} / {0/0,cons/2,n__from/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,from,s,sel} and constructors {0,cons,n__from ,n__s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() sel#(s(X),cons(Y,Z)) -> c_8(sel#(X,activate(Z)),activate#(Z)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(X) -> c_1() activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() sel#(s(X),cons(Y,Z)) -> c_8(sel#(X,activate(Z)),activate#(Z)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/2 ,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,4,5,6,7,8} by application of Pre({1,4,5,6,7,8}) = {2,3}. Here rules are labelled as follows: 1: activate#(X) -> c_1() 2: activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) 3: activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) 4: from#(X) -> c_4() 5: from#(X) -> c_5() 6: s#(X) -> c_6() 7: sel#(0(),cons(X,Y)) -> c_7() 8: sel#(s(X),cons(Y,Z)) -> c_8(sel#(X,activate(Z)),activate#(Z)) ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) - Weak DPs: activate#(X) -> c_1() from#(X) -> c_4() from#(X) -> c_5() s#(X) -> c_6() sel#(0(),cons(X,Y)) -> c_7() sel#(s(X),cons(Y,Z)) -> c_8(sel#(X,activate(Z)),activate#(Z)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/2 ,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_1 from#(X) -> c_5():5 -->_1 from#(X) -> c_4():4 -->_2 activate#(X) -> c_1():3 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 2:S:activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) -->_1 s#(X) -> c_6():6 -->_2 activate#(X) -> c_1():3 -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 3:W:activate#(X) -> c_1() 4:W:from#(X) -> c_4() 5:W:from#(X) -> c_5() 6:W:s#(X) -> c_6() 7:W:sel#(0(),cons(X,Y)) -> c_7() 8:W:sel#(s(X),cons(Y,Z)) -> c_8(sel#(X,activate(Z)),activate#(Z)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: sel#(s(X),cons(Y,Z)) -> c_8(sel#(X,activate(Z)),activate#(Z)) 7: sel#(0(),cons(X,Y)) -> c_7() 4: from#(X) -> c_4() 5: from#(X) -> c_5() 3: activate#(X) -> c_1() 6: s#(X) -> c_6() ** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/2 ,c_3/2,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 2:S:activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)) -->_2 activate#(n__s(X)) -> c_3(s#(activate(X)),activate#(X)):2 -->_2 activate#(n__from(X)) -> c_2(from#(activate(X)),activate#(X)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) ** Step 1.b:5: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) - Weak TRS: activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) s(X) -> n__s(X) sel(0(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) ** Step 1.b:6: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_3) = {1} Following symbols are considered usable: {activate#,from#,s#,sel#} TcT has computed the following interpretation: p(0) = [0] p(activate) = [1] x1 + [0] p(cons) = [1] x2 + [0] p(from) = [2] x1 + [1] p(n__from) = [1] x1 + [4] p(n__s) = [1] x1 + [4] p(s) = [1] x1 + [1] p(sel) = [2] x1 + [2] x2 + [1] p(activate#) = [4] x1 + [0] p(from#) = [0] p(s#) = [0] p(sel#) = [2] x1 + [2] x2 + [1] p(c_1) = [1] p(c_2) = [1] x1 + [8] p(c_3) = [1] x1 + [15] p(c_4) = [1] p(c_5) = [4] p(c_6) = [1] p(c_7) = [1] p(c_8) = [1] Following rules are strictly oriented: activate#(n__from(X)) = [4] X + [16] > [4] X + [8] = c_2(activate#(X)) activate#(n__s(X)) = [4] X + [16] > [4] X + [15] = c_3(activate#(X)) Following rules are (at-least) weakly oriented: ** Step 1.b:7: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: activate#(n__from(X)) -> c_2(activate#(X)) activate#(n__s(X)) -> c_3(activate#(X)) - Signature: {activate/1,from/1,s/1,sel/2,activate#/1,from#/1,s#/1,sel#/2} / {0/0,cons/2,n__from/1,n__s/1,c_1/0,c_2/1 ,c_3/1,c_4/0,c_5/0,c_6/0,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {activate#,from#,s#,sel#} and constructors {0,cons,n__from ,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))