WORST_CASE(Omega(n^1),O(n^1))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            a__f(a(),X,X) -> a__f(X,a__b(),b())
            mark(a()) -> a()
            mark(b()) -> a__b()
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            a__f(a(),X,X) -> a__f(X,a__b(),b())
            mark(a()) -> a()
            mark(b()) -> a__b()
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          mark(y){y -> f(x,y,z)} =
            mark(f(x,y,z)) ->^+ a__f(x,mark(y),z)
              = C[mark(y) = mark(y){}]

** Step 1.b:1: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            a__f(a(),X,X) -> a__f(X,a__b(),b())
            mark(a()) -> a()
            mark(b()) -> a__b()
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(a__f) = {2}
        
        Following symbols are considered usable:
          {a__b,a__f,mark}
        TcT has computed the following interpretation:
             p(a) = 0     
          p(a__b) = 0     
          p(a__f) = 2 + x2
             p(b) = 0     
             p(f) = 2 + x2
          p(mark) = 1 + x1
        
        Following rules are strictly oriented:
        mark(a()) = 1     
                  > 0     
                  = a()   
        
        mark(b()) = 1     
                  > 0     
                  = a__b()
        
        
        Following rules are (at-least) weakly oriented:
                   a__b() =  0                   
                          >= 0                   
                          =  a()                 
        
                   a__b() =  0                   
                          >= 0                   
                          =  b()                 
        
           a__f(X1,X2,X3) =  2 + X2              
                          >= 2 + X2              
                          =  f(X1,X2,X3)         
        
            a__f(a(),X,X) =  2 + X               
                          >= 2                   
                          =  a__f(X,a__b(),b())  
        
        mark(f(X1,X2,X3)) =  3 + X2              
                          >= 3 + X2              
                          =  a__f(X1,mark(X2),X3)
        
** Step 1.b:2: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            a__f(a(),X,X) -> a__f(X,a__b(),b())
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Weak TRS:
            mark(a()) -> a()
            mark(b()) -> a__b()
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(a__f) = {2}
        
        Following symbols are considered usable:
          {a__b,a__f,mark}
        TcT has computed the following interpretation:
             p(a) = 0       
          p(a__b) = 0       
          p(a__f) = 4 + x2  
             p(b) = 0       
             p(f) = 2 + x2  
          p(mark) = 8 + 8*x1
        
        Following rules are strictly oriented:
           a__f(X1,X2,X3) = 4 + X2              
                          > 2 + X2              
                          = f(X1,X2,X3)         
        
        mark(f(X1,X2,X3)) = 24 + 8*X2           
                          > 12 + 8*X2           
                          = a__f(X1,mark(X2),X3)
        
        
        Following rules are (at-least) weakly oriented:
               a__b() =  0                 
                      >= 0                 
                      =  a()               
        
               a__b() =  0                 
                      >= 0                 
                      =  b()               
        
        a__f(a(),X,X) =  4 + X             
                      >= 4                 
                      =  a__f(X,a__b(),b())
        
            mark(a()) =  8                 
                      >= 0                 
                      =  a()               
        
            mark(b()) =  8                 
                      >= 0                 
                      =  a__b()            
        
** Step 1.b:3: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(a(),X,X) -> a__f(X,a__b(),b())
        - Weak TRS:
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            mark(a()) -> a()
            mark(b()) -> a__b()
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(a__f) = {2}
        
        Following symbols are considered usable:
          {a__b,a__f,mark}
        TcT has computed the following interpretation:
             p(a) = 2                    
          p(a__b) = 4                    
          p(a__f) = 10 + 4*x1 + x2 + 4*x3
             p(b) = 1                    
             p(f) = 2 + x1 + x2 + x3     
          p(mark) = 9 + 8*x1             
        
        Following rules are strictly oriented:
        a__b() = 4  
               > 2  
               = a()
        
        a__b() = 4  
               > 1  
               = b()
        
        
        Following rules are (at-least) weakly oriented:
           a__f(X1,X2,X3) =  10 + 4*X1 + X2 + 4*X3  
                          >= 2 + X1 + X2 + X3       
                          =  f(X1,X2,X3)            
        
            a__f(a(),X,X) =  18 + 5*X               
                          >= 18 + 4*X               
                          =  a__f(X,a__b(),b())     
        
                mark(a()) =  25                     
                          >= 2                      
                          =  a()                    
        
                mark(b()) =  17                     
                          >= 4                      
                          =  a__b()                 
        
        mark(f(X1,X2,X3)) =  25 + 8*X1 + 8*X2 + 8*X3
                          >= 19 + 4*X1 + 8*X2 + 4*X3
                          =  a__f(X1,mark(X2),X3)   
        
** Step 1.b:4: NaturalPI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            a__f(a(),X,X) -> a__f(X,a__b(),b())
        - Weak TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            mark(a()) -> a()
            mark(b()) -> a__b()
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(linear):
        The following argument positions are considered usable:
          uargs(a__f) = {2}
        
        Following symbols are considered usable:
          {a__b,a__f,mark}
        TcT has computed the following interpretation:
             p(a) = 2               
          p(a__b) = 9               
          p(a__f) = 8*x1 + x2 + 8*x3
             p(b) = 0               
             p(f) = x1 + x2 + x3    
          p(mark) = 10 + 9*x1       
        
        Following rules are strictly oriented:
        a__f(a(),X,X) = 16 + 9*X          
                      > 9 + 8*X           
                      = a__f(X,a__b(),b())
        
        
        Following rules are (at-least) weakly oriented:
                   a__b() =  9                      
                          >= 2                      
                          =  a()                    
        
                   a__b() =  9                      
                          >= 0                      
                          =  b()                    
        
           a__f(X1,X2,X3) =  8*X1 + X2 + 8*X3       
                          >= X1 + X2 + X3           
                          =  f(X1,X2,X3)            
        
                mark(a()) =  28                     
                          >= 2                      
                          =  a()                    
        
                mark(b()) =  10                     
                          >= 9                      
                          =  a__b()                 
        
        mark(f(X1,X2,X3)) =  10 + 9*X1 + 9*X2 + 9*X3
                          >= 10 + 8*X1 + 9*X2 + 8*X3
                          =  a__f(X1,mark(X2),X3)   
        
** Step 1.b:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a__b() -> a()
            a__b() -> b()
            a__f(X1,X2,X3) -> f(X1,X2,X3)
            a__f(a(),X,X) -> a__f(X,a__b(),b())
            mark(a()) -> a()
            mark(b()) -> a__b()
            mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3)
        - Signature:
            {a__b/0,a__f/3,mark/1} / {a/0,b/0,f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__b,a__f,mark} and constructors {a,b,f}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))