WORST_CASE(Omega(n^1),O(n^2)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: minus(x,y){x -> s(x),y -> s(y)} = minus(s(x),s(y)) ->^+ minus(x,y) = C[minus(x,y) = minus(x,y){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(0(),s(y)) -> c_7() quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(0(),s(y)) -> c_7() quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3,7} by application of Pre({1,3,7}) = {2,4,5,6,8}. Here rules are labelled as follows: 1: minus#(x,0()) -> c_1() 2: minus#(s(x),s(y)) -> c_2(minus#(x,y)) 3: plus#(0(),y) -> c_3() 4: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) 5: plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) 6: plus#(s(x),y) -> c_6(plus#(x,y)) 7: quot#(0(),s(y)) -> c_7() 8: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) ** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak DPs: minus#(x,0()) -> c_1() plus#(0(),y) -> c_3() quot#(0(),s(y)) -> c_7() - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(x,0()) -> c_1():6 -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))):3 -->_1 plus#(0(),y) -> c_3():7 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))):2 -->_3 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 3:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(0(),y) -> c_3():7 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))):2 4:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(0(),y) -> c_3():7 -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))):2 5:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(0(),s(y)) -> c_7():8 -->_2 minus#(x,0()) -> c_1():6 -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 6:W:minus#(x,0()) -> c_1() 7:W:plus#(0(),y) -> c_3() 8:W:quot#(0(),s(y)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: quot#(0(),s(y)) -> c_7() 7: plus#(0(),y) -> c_3() 6: minus#(x,0()) -> c_1() ** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))):2 -->_3 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 3:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))):2 4:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))):2 5:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) ** Step 1.b:5: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) ** Step 1.b:6: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) and a lower component minus#(s(x),s(y)) -> c_2(minus#(x,y)) Further, following extension rules are added to the lower component. plus#(minus(x,s(0())),minus(y,s(s(z)))) -> minus#(x,s(0())) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> plus#(plus(y,s(s(z))),plus(x,s(0()))) plus#(s(x),y) -> plus#(x,y) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) *** Step 1.b:6.a:1: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(x,s(0()))):1 2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(x,s(0()))):1 3:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))) ,minus#(x,s(0()))):1 4:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) *** Step 1.b:6.a:2: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [1] p(minus) = [4] p(plus) = [4] p(quot) = [1] x2 + [1] p(s) = [0] p(minus#) = [1] x2 + [4] p(plus#) = [1] x2 + [0] p(quot#) = [0] p(c_1) = [0] p(c_2) = [4] p(c_3) = [1] p(c_4) = [3] p(c_5) = [4] p(c_6) = [1] x1 + [0] p(c_7) = [1] p(c_8) = [4] x1 + [0] Following rules are strictly oriented: plus#(minus(x,s(0())),minus(y,s(s(z)))) = [4] > [3] = c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) Following rules are (at-least) weakly oriented: plus#(plus(x,s(0())),plus(y,s(s(z)))) = [4] >= [4] = c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) = [1] y + [0] >= [1] y + [0] = c_6(plus#(x,y)) quot#(s(x),s(y)) = [0] >= [0] = c_8(quot#(minus(x,y),s(y))) *** Step 1.b:6.a:3: NaturalPI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) - Weak DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: NaturalPI {shape = Linear, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(linear): The following argument positions are considered usable: uargs(c_6) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = 0 p(minus) = 0 p(plus) = 0 p(quot) = 0 p(s) = 0 p(minus#) = 0 p(plus#) = 4 p(quot#) = 0 p(c_1) = 0 p(c_2) = x1 p(c_3) = 0 p(c_4) = 4 p(c_5) = 0 p(c_6) = x1 p(c_7) = 0 p(c_8) = x1 Following rules are strictly oriented: plus#(plus(x,s(0())),plus(y,s(s(z)))) = 4 > 0 = c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())),minus(y,s(s(z)))) = 4 >= 4 = c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(s(x),y) = 4 >= 4 = c_6(plus#(x,y)) quot#(s(x),s(y)) = 0 >= 0 = c_8(quot#(minus(x,y),s(y))) *** Step 1.b:6.a:4: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) - Weak DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {minus,minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [3] p(minus) = [1] x1 + [0] p(plus) = [1] x1 + [1] x2 + [2] p(quot) = [4] x1 + [2] x2 + [0] p(s) = [1] x1 + [1] p(minus#) = [1] x1 + [1] x2 + [1] p(plus#) = [0] p(quot#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [1] p(c_3) = [2] p(c_4) = [0] p(c_5) = [0] p(c_6) = [2] x1 + [0] p(c_7) = [0] p(c_8) = [1] x1 + [0] Following rules are strictly oriented: quot#(s(x),s(y)) = [1] x + [1] > [1] x + [0] = c_8(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())),minus(y,s(s(z)))) = [0] >= [0] = c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) = [0] >= [0] = c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) = [0] >= [0] = c_6(plus#(x,y)) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = minus(x,y) *** Step 1.b:6.a:5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: plus#(s(x),y) -> c_6(plus#(x,y)) - Weak DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(s) = {1}, uargs(quot#) = {1}, uargs(c_6) = {1}, uargs(c_8) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(minus) = [1] x1 + [0] p(plus) = [1] x1 + [1] x2 + [0] p(quot) = [0] p(s) = [1] x1 + [1] p(minus#) = [0] p(plus#) = [5] x1 + [0] p(quot#) = [1] x1 + [1] x2 + [2] p(c_1) = [0] p(c_2) = [2] x1 + [0] p(c_3) = [2] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [4] p(c_7) = [1] p(c_8) = [1] x1 + [0] Following rules are strictly oriented: plus#(s(x),y) = [5] x + [5] > [5] x + [4] = c_6(plus#(x,y)) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())),minus(y,s(s(z)))) = [5] x + [0] >= [0] = c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) = [5] x + [15] >= [0] = c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) quot#(s(x),s(y)) = [1] x + [1] y + [4] >= [1] x + [1] y + [3] = c_8(quot#(minus(x,y),s(y))) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = minus(x,y) plus(0(),y) = [1] y + [2] >= [1] y + [0] = y plus(minus(x,s(0())),minus(y,s(s(z)))) = [1] x + [1] y + [0] >= [1] x + [1] y + [0] = plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) = [1] x + [1] y + [1] z + [5] >= [1] x + [1] y + [1] z + [5] = plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) = [1] x + [1] y + [1] >= [1] x + [1] y + [1] = s(plus(x,y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** Step 1.b:6.a:6: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:6.b:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak DPs: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> minus#(x,s(0())) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> plus#(plus(y,s(s(z))),plus(x,s(0()))) plus#(s(x),y) -> plus#(x,y) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(minus) = [4] x2 + [0] p(plus) = [1] x2 + [0] p(quot) = [0] p(s) = [1] x1 + [1] p(minus#) = [1] x2 + [0] p(plus#) = [1] p(quot#) = [4] x2 + [2] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [0] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: minus#(s(x),s(y)) = [1] y + [1] > [1] y + [0] = c_2(minus#(x,y)) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())),minus(y,s(s(z)))) = [1] >= [1] = minus#(x,s(0())) plus#(minus(x,s(0())),minus(y,s(s(z)))) = [1] >= [1] = plus#(minus(y,s(s(z))),minus(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) = [1] >= [1] = plus#(plus(y,s(s(z))),plus(x,s(0()))) plus#(s(x),y) = [1] >= [1] = plus#(x,y) quot#(s(x),s(y)) = [4] y + [6] >= [1] y + [0] = minus#(x,y) quot#(s(x),s(y)) = [4] y + [6] >= [4] y + [6] = quot#(minus(x,y),s(y)) *** Step 1.b:6.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> minus#(x,s(0())) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> plus#(minus(y,s(s(z))),minus(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> plus#(plus(y,s(s(z))),plus(x,s(0()))) plus#(s(x),y) -> plus#(x,y) quot#(s(x),s(y)) -> minus#(x,y) quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))