WORST_CASE(Omega(n^1),O(n^2))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            conv(0()) -> cons(nil(),0())
            conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x)))
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            lastbit(0()) -> 0()
            lastbit(s(0())) -> s(0())
            lastbit(s(s(x))) -> lastbit(x)
        - Signature:
            {conv/1,half/1,lastbit/1} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv,half,lastbit} and constructors {0,cons,nil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            conv(0()) -> cons(nil(),0())
            conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x)))
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            lastbit(0()) -> 0()
            lastbit(s(0())) -> s(0())
            lastbit(s(s(x))) -> lastbit(x)
        - Signature:
            {conv/1,half/1,lastbit/1} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv,half,lastbit} and constructors {0,cons,nil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          half(x){x -> s(s(x))} =
            half(s(s(x))) ->^+ s(half(x))
              = C[half(x) = half(x){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            conv(0()) -> cons(nil(),0())
            conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x)))
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            lastbit(0()) -> 0()
            lastbit(s(0())) -> s(0())
            lastbit(s(s(x))) -> lastbit(x)
        - Signature:
            {conv/1,half/1,lastbit/1} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv,half,lastbit} and constructors {0,cons,nil,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          conv#(0()) -> c_1()
          conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
          half#(0()) -> c_3()
          half#(s(0())) -> c_4()
          half#(s(s(x))) -> c_5(half#(x))
          lastbit#(0()) -> c_6()
          lastbit#(s(0())) -> c_7()
          lastbit#(s(s(x))) -> c_8(lastbit#(x))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(0()) -> c_1()
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            half#(0()) -> c_3()
            half#(s(0())) -> c_4()
            half#(s(s(x))) -> c_5(half#(x))
            lastbit#(0()) -> c_6()
            lastbit#(s(0())) -> c_7()
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Strict TRS:
            conv(0()) -> cons(nil(),0())
            conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x)))
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            lastbit(0()) -> 0()
            lastbit(s(0())) -> s(0())
            lastbit(s(s(x))) -> lastbit(x)
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          half(0()) -> 0()
          half(s(0())) -> 0()
          half(s(s(x))) -> s(half(x))
          conv#(0()) -> c_1()
          conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
          half#(0()) -> c_3()
          half#(s(0())) -> c_4()
          half#(s(s(x))) -> c_5(half#(x))
          lastbit#(0()) -> c_6()
          lastbit#(s(0())) -> c_7()
          lastbit#(s(s(x))) -> c_8(lastbit#(x))
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(0()) -> c_1()
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            half#(0()) -> c_3()
            half#(s(0())) -> c_4()
            half#(s(s(x))) -> c_5(half#(x))
            lastbit#(0()) -> c_6()
            lastbit#(s(0())) -> c_7()
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Strict TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(s) = {1},
            uargs(conv#) = {1},
            uargs(c_2) = {1,2},
            uargs(c_5) = {1},
            uargs(c_8) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
                p(cons) = [1] x1 + [1] x2 + [0]
                p(conv) = [8] x1 + [2]         
                p(half) = [1] x1 + [7]         
             p(lastbit) = [0]                  
                 p(nil) = [0]                  
                   p(s) = [1] x1 + [8]         
               p(conv#) = [1] x1 + [0]         
               p(half#) = [0]                  
            p(lastbit#) = [1]                  
                 p(c_1) = [0]                  
                 p(c_2) = [1] x1 + [1] x2 + [0]
                 p(c_3) = [0]                  
                 p(c_4) = [0]                  
                 p(c_5) = [1] x1 + [0]         
                 p(c_6) = [0]                  
                 p(c_7) = [0]                  
                 p(c_8) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
             lastbit#(0()) = [1]         
                           > [0]         
                           = c_6()       
          
          lastbit#(s(0())) = [1]         
                           > [0]         
                           = c_7()       
          
                 half(0()) = [7]         
                           > [0]         
                           = 0()         
          
              half(s(0())) = [15]        
                           > [0]         
                           = 0()         
          
             half(s(s(x))) = [1] x + [23]
                           > [1] x + [15]
                           = s(half(x))  
          
          
          Following rules are (at-least) weakly oriented:
                 conv#(0()) =  [0]                                  
                            >= [0]                                  
                            =  c_1()                                
          
                conv#(s(x)) =  [1] x + [8]                          
                            >= [1] x + [16]                         
                            =  c_2(conv#(half(s(x))),lastbit#(s(x)))
          
                 half#(0()) =  [0]                                  
                            >= [0]                                  
                            =  c_3()                                
          
              half#(s(0())) =  [0]                                  
                            >= [0]                                  
                            =  c_4()                                
          
             half#(s(s(x))) =  [0]                                  
                            >= [0]                                  
                            =  c_5(half#(x))                        
          
          lastbit#(s(s(x))) =  [1]                                  
                            >= [1]                                  
                            =  c_8(lastbit#(x))                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(0()) -> c_1()
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            half#(0()) -> c_3()
            half#(s(0())) -> c_4()
            half#(s(s(x))) -> c_5(half#(x))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak DPs:
            lastbit#(0()) -> c_6()
            lastbit#(s(0())) -> c_7()
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,4}
        by application of
          Pre({1,3,4}) = {2,5}.
        Here rules are labelled as follows:
          1: conv#(0()) -> c_1()
          2: conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
          3: half#(0()) -> c_3()
          4: half#(s(0())) -> c_4()
          5: half#(s(s(x))) -> c_5(half#(x))
          6: lastbit#(s(s(x))) -> c_8(lastbit#(x))
          7: lastbit#(0()) -> c_6()
          8: lastbit#(s(0())) -> c_7()
** Step 1.b:5: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            half#(s(s(x))) -> c_5(half#(x))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak DPs:
            conv#(0()) -> c_1()
            half#(0()) -> c_3()
            half#(s(0())) -> c_4()
            lastbit#(0()) -> c_6()
            lastbit#(s(0())) -> c_7()
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
             -->_2 lastbit#(s(s(x))) -> c_8(lastbit#(x)):3
             -->_2 lastbit#(s(0())) -> c_7():8
             -->_1 conv#(0()) -> c_1():4
             -->_1 conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x))):1
          
          2:S:half#(s(s(x))) -> c_5(half#(x))
             -->_1 half#(s(0())) -> c_4():6
             -->_1 half#(0()) -> c_3():5
             -->_1 half#(s(s(x))) -> c_5(half#(x)):2
          
          3:S:lastbit#(s(s(x))) -> c_8(lastbit#(x))
             -->_1 lastbit#(s(0())) -> c_7():8
             -->_1 lastbit#(0()) -> c_6():7
             -->_1 lastbit#(s(s(x))) -> c_8(lastbit#(x)):3
          
          4:W:conv#(0()) -> c_1()
             
          
          5:W:half#(0()) -> c_3()
             
          
          6:W:half#(s(0())) -> c_4()
             
          
          7:W:lastbit#(0()) -> c_6()
             
          
          8:W:lastbit#(s(0())) -> c_7()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: half#(0()) -> c_3()
          6: half#(s(0())) -> c_4()
          4: conv#(0()) -> c_1()
          7: lastbit#(0()) -> c_6()
          8: lastbit#(s(0())) -> c_7()
** Step 1.b:6: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            half#(s(s(x))) -> c_5(half#(x))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
              lastbit#(s(s(x))) -> c_8(lastbit#(x))
          - Weak DPs:
              half#(s(s(x))) -> c_5(half#(x))
          - Weak TRS:
              half(0()) -> 0()
              half(s(0())) -> 0()
              half(s(s(x))) -> s(half(x))
          - Signature:
              {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
              ,c_6/0,c_7/0,c_8/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
        
        Problem (S)
          - Strict DPs:
              half#(s(s(x))) -> c_5(half#(x))
          - Weak DPs:
              conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
              lastbit#(s(s(x))) -> c_8(lastbit#(x))
          - Weak TRS:
              half(0()) -> 0()
              half(s(0())) -> 0()
              half(s(s(x))) -> s(half(x))
          - Signature:
              {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
              ,c_6/0,c_7/0,c_8/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
*** Step 1.b:6.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
             -->_2 lastbit#(s(s(x))) -> c_8(lastbit#(x)):3
             -->_1 conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x))):1
          
          2:W:half#(s(s(x))) -> c_5(half#(x))
             -->_1 half#(s(s(x))) -> c_5(half#(x)):2
          
          3:S:lastbit#(s(s(x))) -> c_8(lastbit#(x))
             -->_1 lastbit#(s(s(x))) -> c_8(lastbit#(x)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: half#(s(s(x))) -> c_5(half#(x))
*** Step 1.b:6.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: lastbit#(s(s(x))) -> c_8(lastbit#(x))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.a:2.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {half,conv#,half#,lastbit#}
        TcT has computed the following interpretation:
                 p(0) = [0]                          
                        [0]                          
                        [0]                          
              p(cons) = [0]                          
                        [0]                          
                        [2]                          
              p(conv) = [0]                          
                        [0]                          
                        [1]                          
              p(half) = [0 1 0]      [0]             
                        [0 1 1] x1 + [0]             
                        [0 0 1]      [0]             
           p(lastbit) = [0 0 0]      [2]             
                        [0 0 0] x1 + [0]             
                        [0 0 2]      [2]             
               p(nil) = [1]                          
                        [2]                          
                        [2]                          
                 p(s) = [0 1 3]      [2]             
                        [0 1 2] x1 + [1]             
                        [0 0 1]      [1]             
             p(conv#) = [1 0 0]      [0]             
                        [0 2 1] x1 + [1]             
                        [0 1 0]      [1]             
             p(half#) = [0 2 0]      [0]             
                        [2 0 0] x1 + [2]             
                        [0 0 0]      [0]             
          p(lastbit#) = [0 0 1]      [0]             
                        [1 0 0] x1 + [0]             
                        [1 0 0]      [1]             
               p(c_1) = [1]                          
                        [0]                          
                        [0]                          
               p(c_2) = [1 0 0]      [1 0 0]      [0]
                        [1 0 0] x1 + [0 0 1] x2 + [0]
                        [0 0 0]      [2 0 0]      [0]
               p(c_3) = [0]                          
                        [0]                          
                        [2]                          
               p(c_4) = [2]                          
                        [1]                          
                        [0]                          
               p(c_5) = [1]                          
                        [1]                          
                        [1]                          
               p(c_6) = [1]                          
                        [2]                          
                        [0]                          
               p(c_7) = [0]                          
                        [0]                          
                        [0]                          
               p(c_8) = [1 0 0]      [0]             
                        [2 0 0] x1 + [1]             
                        [0 0 0]      [0]             
        
        Following rules are strictly oriented:
        lastbit#(s(s(x))) = [0 0 1]     [2] 
                            [0 1 5] x + [6] 
                            [0 1 5]     [7] 
                          > [0 0 1]     [0] 
                            [0 0 2] x + [1] 
                            [0 0 0]     [0] 
                          = c_8(lastbit#(x))
        
        
        Following rules are (at-least) weakly oriented:
          conv#(s(x)) =  [0 1 3]     [2]                      
                         [0 2 5] x + [4]                      
                         [0 1 2]     [2]                      
                      >= [0 1 3]     [2]                      
                         [0 2 5] x + [4]                      
                         [0 0 2]     [2]                      
                      =  c_2(conv#(half(s(x))),lastbit#(s(x)))
        
            half(0()) =  [0]                                  
                         [0]                                  
                         [0]                                  
                      >= [0]                                  
                         [0]                                  
                         [0]                                  
                      =  0()                                  
        
         half(s(0())) =  [1]                                  
                         [2]                                  
                         [1]                                  
                      >= [0]                                  
                         [0]                                  
                         [0]                                  
                      =  0()                                  
        
        half(s(s(x))) =  [0 1 4]     [4]                      
                         [0 1 5] x + [6]                      
                         [0 0 1]     [2]                      
                      >= [0 1 4]     [2]                      
                         [0 1 3] x + [1]                      
                         [0 0 1]     [1]                      
                      =  s(half(x))                           
        
**** Step 1.b:6.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
        - Weak DPs:
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
        - Weak DPs:
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
             -->_2 lastbit#(s(s(x))) -> c_8(lastbit#(x)):2
             -->_1 conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x))):1
          
          2:W:lastbit#(s(s(x))) -> c_8(lastbit#(x))
             -->_1 lastbit#(s(s(x))) -> c_8(lastbit#(x)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: lastbit#(s(s(x))) -> c_8(lastbit#(x))
**** Step 1.b:6.a:2.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
             -->_1 conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          conv#(s(x)) -> c_2(conv#(half(s(x))))
**** Step 1.b:6.a:2.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: conv#(s(x)) -> c_2(conv#(half(s(x))))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:6.a:2.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1}
        
        Following symbols are considered usable:
          {half,conv#,half#,lastbit#}
        TcT has computed the following interpretation:
                 p(0) = [0]                      
                        [1]                      
              p(cons) = [0 2] x1 + [0 0] x2 + [0]
                        [0 0]      [0 1]      [0]
              p(conv) = [0 0] x1 + [1]           
                        [0 1]      [0]           
              p(half) = [0 2] x1 + [0]           
                        [0 1]      [0]           
           p(lastbit) = [2 1] x1 + [1]           
                        [2 0]      [1]           
               p(nil) = [4]                      
                        [0]                      
                 p(s) = [0 2] x1 + [4]           
                        [0 1]      [1]           
             p(conv#) = [2 0] x1 + [5]           
                        [0 0]      [1]           
             p(half#) = [0 0] x1 + [1]           
                        [0 1]      [1]           
          p(lastbit#) = [1]                      
                        [1]                      
               p(c_1) = [0]                      
                        [0]                      
               p(c_2) = [1 1] x1 + [1]           
                        [0 0]      [1]           
               p(c_3) = [1]                      
                        [0]                      
               p(c_4) = [4]                      
                        [2]                      
               p(c_5) = [4 0] x1 + [0]           
                        [0 0]      [1]           
               p(c_6) = [1]                      
                        [1]                      
               p(c_7) = [0]                      
                        [0]                      
               p(c_8) = [0]                      
                        [1]                      
        
        Following rules are strictly oriented:
        conv#(s(x)) = [0 4] x + [13]        
                      [0 0]     [1]         
                    > [0 4] x + [11]        
                      [0 0]     [1]         
                    = c_2(conv#(half(s(x))))
        
        
        Following rules are (at-least) weakly oriented:
            half(0()) =  [2]          
                         [1]          
                      >= [0]          
                         [1]          
                      =  0()          
        
         half(s(0())) =  [4]          
                         [2]          
                      >= [0]          
                         [1]          
                      =  0()          
        
        half(s(s(x))) =  [0 2] x + [4]
                         [0 1]     [2]
                      >= [0 2] x + [4]
                         [0 1]     [1]
                      =  s(half(x))   
        
***** Step 1.b:6.a:2.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:2.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:conv#(s(x)) -> c_2(conv#(half(s(x))))
             -->_1 conv#(s(x)) -> c_2(conv#(half(s(x)))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: conv#(s(x)) -> c_2(conv#(half(s(x))))
***** Step 1.b:6.a:2.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Weak DPs:
            conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
            lastbit#(s(s(x))) -> c_8(lastbit#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:half#(s(s(x))) -> c_5(half#(x))
             -->_1 half#(s(s(x))) -> c_5(half#(x)):1
          
          2:W:conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
             -->_2 lastbit#(s(s(x))) -> c_8(lastbit#(x)):3
             -->_1 conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x))):2
          
          3:W:lastbit#(s(s(x))) -> c_8(lastbit#(x))
             -->_1 lastbit#(s(s(x))) -> c_8(lastbit#(x)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: conv#(s(x)) -> c_2(conv#(half(s(x))),lastbit#(s(x)))
          3: lastbit#(s(s(x))) -> c_8(lastbit#(x))
*** Step 1.b:6.b:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Weak TRS:
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          half#(s(s(x))) -> c_5(half#(x))
*** Step 1.b:6.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: half#(s(s(x))) -> c_5(half#(x))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.b:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_5) = {1}
        
        Following symbols are considered usable:
          {conv#,half#,lastbit#}
        TcT has computed the following interpretation:
                 p(0) = [1]         
              p(cons) = [1] x1 + [0]
              p(conv) = [8]         
              p(half) = [1] x1 + [2]
           p(lastbit) = [1]         
               p(nil) = [0]         
                 p(s) = [1] x1 + [1]
             p(conv#) = [1] x1 + [1]
             p(half#) = [4] x1 + [0]
          p(lastbit#) = [1] x1 + [0]
               p(c_1) = [1]         
               p(c_2) = [2]         
               p(c_3) = [4]         
               p(c_4) = [0]         
               p(c_5) = [1] x1 + [4]
               p(c_6) = [0]         
               p(c_7) = [8]         
               p(c_8) = [1] x1 + [1]
        
        Following rules are strictly oriented:
        half#(s(s(x))) = [4] x + [8]  
                       > [4] x + [4]  
                       = c_5(half#(x))
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 1.b:6.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            half#(s(s(x))) -> c_5(half#(x))
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:half#(s(s(x))) -> c_5(half#(x))
             -->_1 half#(s(s(x))) -> c_5(half#(x)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: half#(s(s(x))) -> c_5(half#(x))
**** Step 1.b:6.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {conv/1,half/1,lastbit/1,conv#/1,half#/1,lastbit#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/1
            ,c_6/0,c_7/0,c_8/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv#,half#,lastbit#} and constructors {0,cons,nil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))