WORST_CASE(Omega(n^1),O(n^2))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,if} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,if} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          f(x){x -> s(x)} =
            f(s(x)) ->^+ f(x)
              = C[f(x) = f(x){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f,g,if} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          f#(0()) -> c_1()
          f#(1()) -> c_2()
          f#(s(x)) -> c_3(f#(x))
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
          if#(false(),s(x),s(y)) -> c_6()
          if#(true(),s(x),s(y)) -> c_7()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            f#(0()) -> c_1()
            f#(1()) -> c_2()
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
            if#(false(),s(x),s(y)) -> c_6()
            if#(true(),s(x),s(y)) -> c_7()
        - Weak TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,6,7}
        by application of
          Pre({1,2,6,7}) = {3,5}.
        Here rules are labelled as follows:
          1: f#(0()) -> c_1()
          2: f#(1()) -> c_2()
          3: f#(s(x)) -> c_3(f#(x))
          4: g#(x,c(y)) -> c_4(g#(x,y))
          5: g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
          6: if#(false(),s(x),s(y)) -> c_6()
          7: if#(true(),s(x),s(y)) -> c_7()
** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
        - Weak DPs:
            f#(0()) -> c_1()
            f#(1()) -> c_2()
            if#(false(),s(x),s(y)) -> c_6()
            if#(true(),s(x),s(y)) -> c_7()
        - Weak TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:f#(s(x)) -> c_3(f#(x))
             -->_1 f#(1()) -> c_2():5
             -->_1 f#(0()) -> c_1():4
             -->_1 f#(s(x)) -> c_3(f#(x)):1
          
          2:S:g#(x,c(y)) -> c_4(g#(x,y))
             -->_1 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
             -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2
          
          3:S:g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
             -->_3 f#(1()) -> c_2():5
             -->_3 f#(0()) -> c_1():4
             -->_4 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
             -->_4 g#(x,c(y)) -> c_4(g#(x,y)):2
             -->_3 f#(s(x)) -> c_3(f#(x)):1
          
          4:W:f#(0()) -> c_1()
             
          
          5:W:f#(1()) -> c_2()
             
          
          6:W:if#(false(),s(x),s(y)) -> c_6()
             
          
          7:W:if#(true(),s(x),s(y)) -> c_7()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: if#(true(),s(x),s(y)) -> c_7()
          6: if#(false(),s(x),s(y)) -> c_6()
          4: f#(0()) -> c_1()
          5: f#(1()) -> c_2()
** Step 1.b:4: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
        - Weak TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:f#(s(x)) -> c_3(f#(x))
             -->_1 f#(s(x)) -> c_3(f#(x)):1
          
          2:S:g#(x,c(y)) -> c_4(g#(x,y))
             -->_1 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
             -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2
          
          3:S:g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
             -->_4 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
             -->_4 g#(x,c(y)) -> c_4(g#(x,y)):2
             -->_3 f#(s(x)) -> c_3(f#(x)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
** Step 1.b:5: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        - Weak TRS:
            f(0()) -> true()
            f(1()) -> false()
            f(s(x)) -> f(x)
            g(x,c(y)) -> c(g(x,y))
            g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
            if(false(),s(x),s(y)) -> s(y)
            if(true(),s(x),s(y)) -> s(x)
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          f#(s(x)) -> c_3(f#(x))
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
** Step 1.b:6: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        and a lower component
          f#(s(x)) -> c_3(f#(x))
        Further, following extension rules are added to the lower component.
          g#(x,c(y)) -> f#(x)
          g#(x,c(y)) -> g#(x,y)
          g#(x,c(y)) -> g#(s(x),y)
*** Step 1.b:6.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:g#(x,c(y)) -> c_4(g#(x,y))
             -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2
             -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1
          
          2:S:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
             -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2
             -->_2 g#(x,c(y)) -> c_4(g#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          g#(x,c(y)) -> c_5(g#(s(x),y))
*** Step 1.b:6.a:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(s(x),y))
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_4) = {1},
            uargs(c_5) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(0) = [0]                           
                p(1) = [0]                           
                p(c) = [1] x1 + [1]                  
                p(f) = [0]                           
            p(false) = [0]                           
                p(g) = [0]                           
               p(if) = [2] x2 + [1] x3 + [0]         
                p(s) = [2]                           
             p(true) = [1]                           
               p(f#) = [0]                           
               p(g#) = [8] x1 + [1] x2 + [0]         
              p(if#) = [2] x1 + [2] x2 + [1] x3 + [2]
              p(c_1) = [1]                           
              p(c_2) = [1]                           
              p(c_3) = [1] x1 + [1]                  
              p(c_4) = [1] x1 + [0]                  
              p(c_5) = [1] x1 + [0]                  
              p(c_6) = [0]                           
              p(c_7) = [1]                           
          
          Following rules are strictly oriented:
          g#(x,c(y)) = [8] x + [1] y + [1]
                     > [8] x + [1] y + [0]
                     = c_4(g#(x,y))       
          
          
          Following rules are (at-least) weakly oriented:
          g#(x,c(y)) =  [8] x + [1] y + [1]
                     >= [1] y + [16]       
                     =  c_5(g#(s(x),y))    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:6.a:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            g#(x,c(y)) -> c_5(g#(s(x),y))
        - Weak DPs:
            g#(x,c(y)) -> c_4(g#(x,y))
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_4) = {1},
            uargs(c_5) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                p(0) = [0]                  
                p(1) = [0]                  
                p(c) = [1] x1 + [2]         
                p(f) = [0]                  
            p(false) = [0]                  
                p(g) = [0]                  
               p(if) = [0]                  
                p(s) = [4]                  
             p(true) = [0]                  
               p(f#) = [8] x1 + [2]         
               p(g#) = [2] x1 + [6] x2 + [4]
              p(if#) = [1] x1 + [2] x3 + [2]
              p(c_1) = [1]                  
              p(c_2) = [1]                  
              p(c_3) = [1] x1 + [2]         
              p(c_4) = [1] x1 + [8]         
              p(c_5) = [1] x1 + [0]         
              p(c_6) = [1]                  
              p(c_7) = [8]                  
          
          Following rules are strictly oriented:
          g#(x,c(y)) = [2] x + [6] y + [16]
                     > [6] y + [12]        
                     = c_5(g#(s(x),y))     
          
          
          Following rules are (at-least) weakly oriented:
          g#(x,c(y)) =  [2] x + [6] y + [16]
                     >= [2] x + [6] y + [12]
                     =  c_4(g#(x,y))        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:6.a:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(s(x),y))
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            f#(s(x)) -> c_3(f#(x))
        - Weak DPs:
            g#(x,c(y)) -> f#(x)
            g#(x,c(y)) -> g#(x,y)
            g#(x,c(y)) -> g#(s(x),y)
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_3) = {1}
        
        Following symbols are considered usable:
          {f#,g#,if#}
        TcT has computed the following interpretation:
              p(0) = [0]                   
              p(1) = [1]                   
              p(c) = [1] x1 + [2]          
              p(f) = [4]                   
          p(false) = [2]                   
              p(g) = [1]                   
             p(if) = [1] x2 + [2] x3 + [2] 
              p(s) = [1] x1 + [6]          
           p(true) = [0]                   
             p(f#) = [1] x1 + [0]          
             p(g#) = [1] x1 + [9] x2 + [13]
            p(if#) = [1] x1 + [2]          
            p(c_1) = [1]                   
            p(c_2) = [0]                   
            p(c_3) = [1] x1 + [5]          
            p(c_4) = [1] x1 + [8]          
            p(c_5) = [1] x1 + [0]          
            p(c_6) = [8]                   
            p(c_7) = [1]                   
        
        Following rules are strictly oriented:
        f#(s(x)) = [1] x + [6]
                 > [1] x + [5]
                 = c_3(f#(x)) 
        
        
        Following rules are (at-least) weakly oriented:
        g#(x,c(y)) =  [1] x + [9] y + [31]
                   >= [1] x + [0]         
                   =  f#(x)               
        
        g#(x,c(y)) =  [1] x + [9] y + [31]
                   >= [1] x + [9] y + [13]
                   =  g#(x,y)             
        
        g#(x,c(y)) =  [1] x + [9] y + [31]
                   >= [1] x + [9] y + [19]
                   =  g#(s(x),y)          
        
*** Step 1.b:6.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> f#(x)
            g#(x,c(y)) -> g#(x,y)
            g#(x,c(y)) -> g#(s(x),y)
        - Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f#,g#,if#} and constructors {0,1,c,false,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))