WORST_CASE(Omega(n^1),O(n^1)) * Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1} / {0/0,1/0,c/1,d/1,h/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,c,d,h} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1} / {0/0,1/0,c/1,d/1,h/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,c,d,h} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: g(x){x -> h(x)} = g(h(x)) ->^+ g(x) = C[g(x) = g(x){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1} / {0/0,1/0,c/1,d/1,h/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,1,c,d,h} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) g#(c(x)) -> c_3() g#(c(1())) -> c_4(g#(d(h(0())))) g#(c(h(0()))) -> c_5(g#(d(1()))) g#(d(x)) -> c_6() g#(h(x)) -> c_7(g#(x)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) g#(c(x)) -> c_3() g#(c(1())) -> c_4(g#(d(h(0())))) g#(c(h(0()))) -> c_5(g#(d(1()))) g#(d(x)) -> c_6() g#(h(x)) -> c_7(g#(x)) - Weak TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/2,c_2/2,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,6} by application of Pre({3,6}) = {4,5,7}. Here rules are labelled as follows: 1: f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) 2: f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) 3: g#(c(x)) -> c_3() 4: g#(c(1())) -> c_4(g#(d(h(0())))) 5: g#(c(h(0()))) -> c_5(g#(d(1()))) 6: g#(d(x)) -> c_6() 7: g#(h(x)) -> c_7(g#(x)) ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) g#(c(1())) -> c_4(g#(d(h(0())))) g#(c(h(0()))) -> c_5(g#(d(1()))) g#(h(x)) -> c_7(g#(x)) - Weak DPs: g#(c(x)) -> c_3() g#(d(x)) -> c_6() - Weak TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/2,c_2/2,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {3,4} by application of Pre({3,4}) = {5}. Here rules are labelled as follows: 1: f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) 2: f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) 3: g#(c(1())) -> c_4(g#(d(h(0())))) 4: g#(c(h(0()))) -> c_5(g#(d(1()))) 5: g#(h(x)) -> c_7(g#(x)) 6: g#(c(x)) -> c_3() 7: g#(d(x)) -> c_6() ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) g#(h(x)) -> c_7(g#(x)) - Weak DPs: g#(c(x)) -> c_3() g#(c(1())) -> c_4(g#(d(h(0())))) g#(c(h(0()))) -> c_5(g#(d(1()))) g#(d(x)) -> c_6() - Weak TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/2,c_2/2,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) -->_2 f#(f(x)) -> c_2(f#(d(f(x))),f#(x)):2 -->_2 f#(f(x)) -> c_1(f#(c(f(x))),f#(x)):1 2:S:f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) -->_2 f#(f(x)) -> c_2(f#(d(f(x))),f#(x)):2 -->_2 f#(f(x)) -> c_1(f#(c(f(x))),f#(x)):1 3:S:g#(h(x)) -> c_7(g#(x)) -->_1 g#(c(h(0()))) -> c_5(g#(d(1()))):6 -->_1 g#(c(1())) -> c_4(g#(d(h(0())))):5 -->_1 g#(d(x)) -> c_6():7 -->_1 g#(c(x)) -> c_3():4 -->_1 g#(h(x)) -> c_7(g#(x)):3 4:W:g#(c(x)) -> c_3() 5:W:g#(c(1())) -> c_4(g#(d(h(0())))) -->_1 g#(d(x)) -> c_6():7 6:W:g#(c(h(0()))) -> c_5(g#(d(1()))) -->_1 g#(d(x)) -> c_6():7 7:W:g#(d(x)) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: g#(c(x)) -> c_3() 5: g#(c(1())) -> c_4(g#(d(h(0())))) 6: g#(c(h(0()))) -> c_5(g#(d(1()))) 7: g#(d(x)) -> c_6() ** Step 1.b:5: SimplifyRHS WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) g#(h(x)) -> c_7(g#(x)) - Weak TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/2,c_2/2,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:f#(f(x)) -> c_1(f#(c(f(x))),f#(x)) -->_2 f#(f(x)) -> c_2(f#(d(f(x))),f#(x)):2 -->_2 f#(f(x)) -> c_1(f#(c(f(x))),f#(x)):1 2:S:f#(f(x)) -> c_2(f#(d(f(x))),f#(x)) -->_2 f#(f(x)) -> c_2(f#(d(f(x))),f#(x)):2 -->_2 f#(f(x)) -> c_1(f#(c(f(x))),f#(x)):1 3:S:g#(h(x)) -> c_7(g#(x)) -->_1 g#(h(x)) -> c_7(g#(x)):3 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: f#(f(x)) -> c_1(f#(x)) f#(f(x)) -> c_2(f#(x)) ** Step 1.b:6: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(f(x)) -> c_1(f#(x)) f#(f(x)) -> c_2(f#(x)) g#(h(x)) -> c_7(g#(x)) - Weak TRS: f(f(x)) -> f(c(f(x))) f(f(x)) -> f(d(f(x))) g(c(x)) -> x g(c(1())) -> g(d(h(0()))) g(c(h(0()))) -> g(d(1())) g(d(x)) -> x g(h(x)) -> g(x) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: g#(h(x)) -> c_7(g#(x)) ** Step 1.b:7: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: g#(h(x)) -> c_7(g#(x)) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(c) = [1] x1 + [0] p(d) = [1] x1 + [1] p(f) = [2] x1 + [2] p(g) = [8] x1 + [1] p(h) = [1] x1 + [3] p(f#) = [0] p(g#) = [6] x1 + [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [8] p(c_4) = [1] x1 + [0] p(c_5) = [2] p(c_6) = [2] p(c_7) = [1] x1 + [10] Following rules are strictly oriented: g#(h(x)) = [6] x + [18] > [6] x + [10] = c_7(g#(x)) Following rules are (at-least) weakly oriented: ** Step 1.b:8: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(h(x)) -> c_7(g#(x)) - Signature: {f/1,g/1,f#/1,g#/1} / {0/0,1/0,c/1,d/1,h/1,c_1/1,c_2/1,c_3/0,c_4/1,c_5/1,c_6/0,c_7/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,1,c,d,h} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))