WORST_CASE(Omega(n^1),O(n^3))
* Step 1: Sum WORST_CASE(Omega(n^1),O(n^3))
    + Considered Problem:
        - Strict TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            less_leaves(x,leaf()) -> false()
            less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))
            less_leaves(leaf(),cons(w,z)) -> true()
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
            shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
            shuffle(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0
            ,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app,concat,less_leaves,minus,quot,reverse
            ,shuffle} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            less_leaves(x,leaf()) -> false()
            less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))
            less_leaves(leaf(),cons(w,z)) -> true()
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
            shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
            shuffle(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0
            ,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app,concat,less_leaves,minus,quot,reverse
            ,shuffle} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          app(y,z){y -> add(x,y)} =
            app(add(x,y),z) ->^+ add(x,app(y,z))
              = C[app(y,z) = app(y,z){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            less_leaves(x,leaf()) -> false()
            less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))
            less_leaves(leaf(),cons(w,z)) -> true()
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
            shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
            shuffle(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0
            ,s/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app,concat,less_leaves,minus,quot,reverse
            ,shuffle} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          app#(add(n,x),y) -> c_1(app#(x,y))
          app#(nil(),y) -> c_2()
          concat#(cons(u,v),y) -> c_3(concat#(v,y))
          concat#(leaf(),y) -> c_4()
          less_leaves#(x,leaf()) -> c_5()
          less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
          less_leaves#(leaf(),cons(w,z)) -> c_7()
          minus#(x,0()) -> c_8()
          minus#(s(x),s(y)) -> c_9(minus#(x,y))
          quot#(0(),s(y)) -> c_10()
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
          reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
          reverse#(nil()) -> c_13()
          shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
          shuffle#(nil()) -> c_15()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: PredecessorEstimation WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
            app#(nil(),y) -> c_2()
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            concat#(leaf(),y) -> c_4()
            less_leaves#(x,leaf()) -> c_5()
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
            less_leaves#(leaf(),cons(w,z)) -> c_7()
            minus#(x,0()) -> c_8()
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            quot#(0(),s(y)) -> c_10()
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
            reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
            reverse#(nil()) -> c_13()
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
            shuffle#(nil()) -> c_15()
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            less_leaves(x,leaf()) -> false()
            less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))
            less_leaves(leaf(),cons(w,z)) -> true()
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
            shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
            shuffle(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,4,5,7,8,10,13,15}
        by application of
          Pre({2,4,5,7,8,10,13,15}) = {1,3,6,9,11,12,14}.
        Here rules are labelled as follows:
          1: app#(add(n,x),y) -> c_1(app#(x,y))
          2: app#(nil(),y) -> c_2()
          3: concat#(cons(u,v),y) -> c_3(concat#(v,y))
          4: concat#(leaf(),y) -> c_4()
          5: less_leaves#(x,leaf()) -> c_5()
          6: less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
          7: less_leaves#(leaf(),cons(w,z)) -> c_7()
          8: minus#(x,0()) -> c_8()
          9: minus#(s(x),s(y)) -> c_9(minus#(x,y))
          10: quot#(0(),s(y)) -> c_10()
          11: quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
          12: reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
          13: reverse#(nil()) -> c_13()
          14: shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
          15: shuffle#(nil()) -> c_15()
** Step 1.b:3: RemoveWeakSuffixes WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
            reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
        - Weak DPs:
            app#(nil(),y) -> c_2()
            concat#(leaf(),y) -> c_4()
            less_leaves#(x,leaf()) -> c_5()
            less_leaves#(leaf(),cons(w,z)) -> c_7()
            minus#(x,0()) -> c_8()
            quot#(0(),s(y)) -> c_10()
            reverse#(nil()) -> c_13()
            shuffle#(nil()) -> c_15()
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            less_leaves(x,leaf()) -> false()
            less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))
            less_leaves(leaf(),cons(w,z)) -> true()
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
            shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
            shuffle(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:app#(add(n,x),y) -> c_1(app#(x,y))
             -->_1 app#(nil(),y) -> c_2():8
             -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1
          
          2:S:concat#(cons(u,v),y) -> c_3(concat#(v,y))
             -->_1 concat#(leaf(),y) -> c_4():9
             -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2
          
          3:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))
                                                      ,concat#(u,v)
                                                      ,concat#(w,z))
             -->_1 less_leaves#(leaf(),cons(w,z)) -> c_7():11
             -->_1 less_leaves#(x,leaf()) -> c_5():10
             -->_3 concat#(leaf(),y) -> c_4():9
             -->_2 concat#(leaf(),y) -> c_4():9
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))
                                                           ,concat#(u,v)
                                                           ,concat#(w,z)):3
             -->_3 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2
             -->_2 concat#(cons(u,v),y) -> c_3(concat#(v,y)):2
          
          4:S:minus#(s(x),s(y)) -> c_9(minus#(x,y))
             -->_1 minus#(x,0()) -> c_8():12
             -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4
          
          5:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(0(),s(y)) -> c_10():13
             -->_2 minus#(x,0()) -> c_8():12
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):5
             -->_2 minus#(s(x),s(y)) -> c_9(minus#(x,y)):4
          
          6:S:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
             -->_2 reverse#(nil()) -> c_13():14
             -->_1 app#(nil(),y) -> c_2():8
             -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):6
             -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1
          
          7:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
             -->_1 shuffle#(nil()) -> c_15():15
             -->_2 reverse#(nil()) -> c_13():14
             -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):7
             -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):6
          
          8:W:app#(nil(),y) -> c_2()
             
          
          9:W:concat#(leaf(),y) -> c_4()
             
          
          10:W:less_leaves#(x,leaf()) -> c_5()
             
          
          11:W:less_leaves#(leaf(),cons(w,z)) -> c_7()
             
          
          12:W:minus#(x,0()) -> c_8()
             
          
          13:W:quot#(0(),s(y)) -> c_10()
             
          
          14:W:reverse#(nil()) -> c_13()
             
          
          15:W:shuffle#(nil()) -> c_15()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          15: shuffle#(nil()) -> c_15()
          14: reverse#(nil()) -> c_13()
          13: quot#(0(),s(y)) -> c_10()
          12: minus#(x,0()) -> c_8()
          10: less_leaves#(x,leaf()) -> c_5()
          11: less_leaves#(leaf(),cons(w,z)) -> c_7()
          9: concat#(leaf(),y) -> c_4()
          8: app#(nil(),y) -> c_2()
** Step 1.b:4: UsableRules WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
            reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            less_leaves(x,leaf()) -> false()
            less_leaves(cons(u,v),cons(w,z)) -> less_leaves(concat(u,v),concat(w,z))
            less_leaves(leaf(),cons(w,z)) -> true()
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
            shuffle(add(n,x)) -> add(n,shuffle(reverse(x)))
            shuffle(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          app(add(n,x),y) -> add(n,app(x,y))
          app(nil(),y) -> y
          concat(cons(u,v),y) -> cons(u,concat(v,y))
          concat(leaf(),y) -> y
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
          reverse(nil()) -> nil()
          app#(add(n,x),y) -> c_1(app#(x,y))
          concat#(cons(u,v),y) -> c_3(concat#(v,y))
          less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
          minus#(s(x),s(y)) -> c_9(minus#(x,y))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
          reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
          shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
** Step 1.b:5: DecomposeDG WORST_CASE(?,O(n^3))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
            reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
          shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
        and a lower component
          app#(add(n,x),y) -> c_1(app#(x,y))
          concat#(cons(u,v),y) -> c_3(concat#(v,y))
          minus#(s(x),s(y)) -> c_9(minus#(x,y))
          reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
        Further, following extension rules are added to the lower component.
          less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
          less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
          less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
          quot#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
          shuffle#(add(n,x)) -> reverse#(x)
          shuffle#(add(n,x)) -> shuffle#(reverse(x))
*** Step 1.b:5.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)),concat#(u,v),concat#(w,z))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))
                                                      ,concat#(u,v)
                                                      ,concat#(w,z))
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z))
                                                           ,concat#(u,v)
                                                           ,concat#(w,z)):1
          
          2:S:quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)),minus#(x,y)):2
          
          3:S:shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x))
             -->_1 shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)),reverse#(x)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)))
          quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
          shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)))
*** Step 1.b:5.a:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/2,c_13/0,c_14/1,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {2},
            uargs(app) = {1},
            uargs(cons) = {2},
            uargs(less_leaves#) = {1,2},
            uargs(quot#) = {1},
            uargs(shuffle#) = {1},
            uargs(c_6) = {1},
            uargs(c_11) = {1},
            uargs(c_14) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(0) = [0]                  
                     p(add) = [1] x2 + [0]         
                     p(app) = [1] x1 + [1] x2 + [0]
                  p(concat) = [1] x1 + [1] x2 + [0]
                    p(cons) = [1] x1 + [1] x2 + [1]
                   p(false) = [0]                  
                    p(leaf) = [0]                  
             p(less_leaves) = [2] x2 + [1]         
                   p(minus) = [1] x1 + [0]         
                     p(nil) = [0]                  
                    p(quot) = [1] x1 + [2]         
                 p(reverse) = [0]                  
                       p(s) = [1] x1 + [0]         
                 p(shuffle) = [1] x1 + [0]         
                    p(true) = [1]                  
                    p(app#) = [1] x1 + [0]         
                 p(concat#) = [1] x1 + [2] x2 + [0]
            p(less_leaves#) = [1] x1 + [1] x2 + [0]
                  p(minus#) = [2] x1 + [1] x2 + [1]
                   p(quot#) = [1] x1 + [0]         
                p(reverse#) = [4] x1 + [4]         
                p(shuffle#) = [1] x1 + [0]         
                     p(c_1) = [1]                  
                     p(c_2) = [0]                  
                     p(c_3) = [1] x1 + [4]         
                     p(c_4) = [0]                  
                     p(c_5) = [4]                  
                     p(c_6) = [1] x1 + [0]         
                     p(c_7) = [1]                  
                     p(c_8) = [0]                  
                     p(c_9) = [1] x1 + [2]         
                    p(c_10) = [0]                  
                    p(c_11) = [1] x1 + [3]         
                    p(c_12) = [4] x1 + [4]         
                    p(c_13) = [1]                  
                    p(c_14) = [1] x1 + [0]         
                    p(c_15) = [0]                  
          
          Following rules are strictly oriented:
          less_leaves#(cons(u,v),cons(w,z)) = [1] u + [1] v + [1] w + [1] z + [2]       
                                            > [1] u + [1] v + [1] w + [1] z + [0]       
                                            = c_6(less_leaves#(concat(u,v),concat(w,z)))
          
          
          Following rules are (at-least) weakly oriented:
             quot#(s(x),s(y)) =  [1] x + [0]                 
                              >= [1] x + [3]                 
                              =  c_11(quot#(minus(x,y),s(y)))
          
           shuffle#(add(n,x)) =  [1] x + [0]                 
                              >= [0]                         
                              =  c_14(shuffle#(reverse(x)))  
          
              app(add(n,x),y) =  [1] x + [1] y + [0]         
                              >= [1] x + [1] y + [0]         
                              =  add(n,app(x,y))             
          
                 app(nil(),y) =  [1] y + [0]                 
                              >= [1] y + [0]                 
                              =  y                           
          
          concat(cons(u,v),y) =  [1] u + [1] v + [1] y + [1] 
                              >= [1] u + [1] v + [1] y + [1] 
                              =  cons(u,concat(v,y))         
          
             concat(leaf(),y) =  [1] y + [0]                 
                              >= [1] y + [0]                 
                              =  y                           
          
                 minus(x,0()) =  [1] x + [0]                 
                              >= [1] x + [0]                 
                              =  x                           
          
             minus(s(x),s(y)) =  [1] x + [0]                 
                              >= [1] x + [0]                 
                              =  minus(x,y)                  
          
            reverse(add(n,x)) =  [0]                         
                              >= [0]                         
                              =  app(reverse(x),add(n,nil()))
          
               reverse(nil()) =  [0]                         
                              >= [0]                         
                              =  nil()                       
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:5.a:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/2,c_13/0,c_14/1,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {2},
            uargs(app) = {1},
            uargs(cons) = {2},
            uargs(less_leaves#) = {1,2},
            uargs(quot#) = {1},
            uargs(shuffle#) = {1},
            uargs(c_6) = {1},
            uargs(c_11) = {1},
            uargs(c_14) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(0) = [0]                  
                     p(add) = [1] x2 + [0]         
                     p(app) = [1] x1 + [1] x2 + [0]
                  p(concat) = [1] x2 + [0]         
                    p(cons) = [1] x2 + [0]         
                   p(false) = [0]                  
                    p(leaf) = [0]                  
             p(less_leaves) = [4] x1 + [0]         
                   p(minus) = [1] x1 + [0]         
                     p(nil) = [0]                  
                    p(quot) = [1]                  
                 p(reverse) = [0]                  
                       p(s) = [1] x1 + [1]         
                 p(shuffle) = [1]                  
                    p(true) = [1]                  
                    p(app#) = [4] x2 + [1]         
                 p(concat#) = [2] x1 + [1] x2 + [1]
            p(less_leaves#) = [1] x1 + [1] x2 + [1]
                  p(minus#) = [1]                  
                   p(quot#) = [1] x1 + [4] x2 + [3]
                p(reverse#) = [1]                  
                p(shuffle#) = [1] x1 + [0]         
                     p(c_1) = [1]                  
                     p(c_2) = [1]                  
                     p(c_3) = [4]                  
                     p(c_4) = [1]                  
                     p(c_5) = [0]                  
                     p(c_6) = [1] x1 + [0]         
                     p(c_7) = [0]                  
                     p(c_8) = [0]                  
                     p(c_9) = [2] x1 + [0]         
                    p(c_10) = [0]                  
                    p(c_11) = [1] x1 + [0]         
                    p(c_12) = [4] x2 + [4]         
                    p(c_13) = [0]                  
                    p(c_14) = [1] x1 + [4]         
                    p(c_15) = [0]                  
          
          Following rules are strictly oriented:
          quot#(s(x),s(y)) = [1] x + [4] y + [8]         
                           > [1] x + [4] y + [7]         
                           = c_11(quot#(minus(x,y),s(y)))
          
          
          Following rules are (at-least) weakly oriented:
          less_leaves#(cons(u,v),cons(w,z)) =  [1] v + [1] z + [1]                       
                                            >= [1] v + [1] z + [1]                       
                                            =  c_6(less_leaves#(concat(u,v),concat(w,z)))
          
                         shuffle#(add(n,x)) =  [1] x + [0]                               
                                            >= [4]                                       
                                            =  c_14(shuffle#(reverse(x)))                
          
                            app(add(n,x),y) =  [1] x + [1] y + [0]                       
                                            >= [1] x + [1] y + [0]                       
                                            =  add(n,app(x,y))                           
          
                               app(nil(),y) =  [1] y + [0]                               
                                            >= [1] y + [0]                               
                                            =  y                                         
          
                        concat(cons(u,v),y) =  [1] y + [0]                               
                                            >= [1] y + [0]                               
                                            =  cons(u,concat(v,y))                       
          
                           concat(leaf(),y) =  [1] y + [0]                               
                                            >= [1] y + [0]                               
                                            =  y                                         
          
                               minus(x,0()) =  [1] x + [0]                               
                                            >= [1] x + [0]                               
                                            =  x                                         
          
                           minus(s(x),s(y)) =  [1] x + [1]                               
                                            >= [1] x + [0]                               
                                            =  minus(x,y)                                
          
                          reverse(add(n,x)) =  [0]                                       
                                            >= [0]                                       
                                            =  app(reverse(x),add(n,nil()))              
          
                             reverse(nil()) =  [0]                                       
                                            >= [0]                                       
                                            =  nil()                                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:5.a:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/2,c_13/0,c_14/1,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {2},
            uargs(app) = {1},
            uargs(cons) = {2},
            uargs(less_leaves#) = {1,2},
            uargs(quot#) = {1},
            uargs(shuffle#) = {1},
            uargs(c_6) = {1},
            uargs(c_11) = {1},
            uargs(c_14) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(0) = [0]                  
                     p(add) = [1] x2 + [1]         
                     p(app) = [1] x1 + [1] x2 + [0]
                  p(concat) = [1] x1 + [1] x2 + [0]
                    p(cons) = [1] x1 + [1] x2 + [0]
                   p(false) = [0]                  
                    p(leaf) = [0]                  
             p(less_leaves) = [0]                  
                   p(minus) = [1] x1 + [0]         
                     p(nil) = [0]                  
                    p(quot) = [0]                  
                 p(reverse) = [1] x1 + [0]         
                       p(s) = [1] x1 + [4]         
                 p(shuffle) = [1]                  
                    p(true) = [0]                  
                    p(app#) = [0]                  
                 p(concat#) = [0]                  
            p(less_leaves#) = [1] x1 + [1] x2 + [0]
                  p(minus#) = [0]                  
                   p(quot#) = [1] x1 + [7]         
                p(reverse#) = [0]                  
                p(shuffle#) = [1] x1 + [0]         
                     p(c_1) = [0]                  
                     p(c_2) = [0]                  
                     p(c_3) = [0]                  
                     p(c_4) = [0]                  
                     p(c_5) = [0]                  
                     p(c_6) = [1] x1 + [0]         
                     p(c_7) = [0]                  
                     p(c_8) = [0]                  
                     p(c_9) = [0]                  
                    p(c_10) = [0]                  
                    p(c_11) = [1] x1 + [4]         
                    p(c_12) = [0]                  
                    p(c_13) = [0]                  
                    p(c_14) = [1] x1 + [0]         
                    p(c_15) = [0]                  
          
          Following rules are strictly oriented:
          shuffle#(add(n,x)) = [1] x + [1]               
                             > [1] x + [0]               
                             = c_14(shuffle#(reverse(x)))
          
          
          Following rules are (at-least) weakly oriented:
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [0]       
                                            >= [1] u + [1] v + [1] w + [1] z + [0]       
                                            =  c_6(less_leaves#(concat(u,v),concat(w,z)))
          
                           quot#(s(x),s(y)) =  [1] x + [11]                              
                                            >= [1] x + [11]                              
                                            =  c_11(quot#(minus(x,y),s(y)))              
          
                            app(add(n,x),y) =  [1] x + [1] y + [1]                       
                                            >= [1] x + [1] y + [1]                       
                                            =  add(n,app(x,y))                           
          
                               app(nil(),y) =  [1] y + [0]                               
                                            >= [1] y + [0]                               
                                            =  y                                         
          
                        concat(cons(u,v),y) =  [1] u + [1] v + [1] y + [0]               
                                            >= [1] u + [1] v + [1] y + [0]               
                                            =  cons(u,concat(v,y))                       
          
                           concat(leaf(),y) =  [1] y + [0]                               
                                            >= [1] y + [0]                               
                                            =  y                                         
          
                               minus(x,0()) =  [1] x + [0]                               
                                            >= [1] x + [0]                               
                                            =  x                                         
          
                           minus(s(x),s(y)) =  [1] x + [4]                               
                                            >= [1] x + [0]                               
                                            =  minus(x,y)                                
          
                          reverse(add(n,x)) =  [1] x + [1]                               
                                            >= [1] x + [1]                               
                                            =  app(reverse(x),add(n,nil()))              
          
                             reverse(nil()) =  [0]                                       
                                            >= [0]                                       
                                            =  nil()                                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** Step 1.b:5.a:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> c_6(less_leaves#(concat(u,v),concat(w,z)))
            quot#(s(x),s(y)) -> c_11(quot#(minus(x,y),s(y)))
            shuffle#(add(n,x)) -> c_14(shuffle#(reverse(x)))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/0,c_11/1,c_12/2,c_13/0,c_14/1,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:5.b:1: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Nothing, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          concat#(cons(u,v),y) -> c_3(concat#(v,y))
          less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
          less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
          less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
          minus#(s(x),s(y)) -> c_9(minus#(x,y))
          quot#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
          reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
          shuffle#(add(n,x)) -> reverse#(x)
          shuffle#(add(n,x)) -> shuffle#(reverse(x))
        and a lower component
          app#(add(n,x),y) -> c_1(app#(x,y))
        Further, following extension rules are added to the lower component.
          concat#(cons(u,v),y) -> concat#(v,y)
          less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
          less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
          less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
          minus#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> minus#(x,y)
          quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
          reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
          reverse#(add(n,x)) -> reverse#(x)
          shuffle#(add(n,x)) -> reverse#(x)
          shuffle#(add(n,x)) -> shuffle#(reverse(x))
**** Step 1.b:5.b:1.a:1: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:concat#(cons(u,v),y) -> c_3(concat#(v,y))
             -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1
          
          2:S:minus#(s(x),s(y)) -> c_9(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2
          
          3:S:reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x))
             -->_2 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):3
          
          4:W:less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
             -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1
          
          5:W:less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
             -->_1 concat#(cons(u,v),y) -> c_3(concat#(v,y)):1
          
          6:W:less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z)):6
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z):5
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v):4
          
          7:W:quot#(s(x),s(y)) -> minus#(x,y)
             -->_1 minus#(s(x),s(y)) -> c_9(minus#(x,y)):2
          
          8:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
             -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):8
             -->_1 quot#(s(x),s(y)) -> minus#(x,y):7
          
          9:W:shuffle#(add(n,x)) -> reverse#(x)
             -->_1 reverse#(add(n,x)) -> c_12(app#(reverse(x),add(n,nil())),reverse#(x)):3
          
          10:W:shuffle#(add(n,x)) -> shuffle#(reverse(x))
             -->_1 shuffle#(add(n,x)) -> shuffle#(reverse(x)):10
             -->_1 shuffle#(add(n,x)) -> reverse#(x):9
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          reverse#(add(n,x)) -> c_12(reverse#(x))
**** Step 1.b:5.b:1.a:2: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            reverse#(add(n,x)) -> c_12(reverse#(x))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {2},
            uargs(app) = {1},
            uargs(cons) = {2},
            uargs(less_leaves#) = {1,2},
            uargs(quot#) = {1},
            uargs(shuffle#) = {1},
            uargs(c_3) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(0) = [0]                  
                     p(add) = [1] x2 + [4]         
                     p(app) = [1] x1 + [1] x2 + [0]
                  p(concat) = [1] x1 + [1] x2 + [0]
                    p(cons) = [1] x1 + [1] x2 + [4]
                   p(false) = [0]                  
                    p(leaf) = [1]                  
             p(less_leaves) = [4] x2 + [1]         
                   p(minus) = [1] x1 + [0]         
                     p(nil) = [0]                  
                    p(quot) = [1] x1 + [4] x2 + [1]
                 p(reverse) = [1] x1 + [0]         
                       p(s) = [1] x1 + [0]         
                 p(shuffle) = [1] x1 + [0]         
                    p(true) = [1]                  
                    p(app#) = [0]                  
                 p(concat#) = [0]                  
            p(less_leaves#) = [1] x1 + [1] x2 + [0]
                  p(minus#) = [0]                  
                   p(quot#) = [1] x1 + [0]         
                p(reverse#) = [1] x1 + [3]         
                p(shuffle#) = [1] x1 + [0]         
                     p(c_1) = [0]                  
                     p(c_2) = [0]                  
                     p(c_3) = [1] x1 + [5]         
                     p(c_4) = [0]                  
                     p(c_5) = [1]                  
                     p(c_6) = [1] x1 + [4]         
                     p(c_7) = [1]                  
                     p(c_8) = [0]                  
                     p(c_9) = [1] x1 + [1]         
                    p(c_10) = [0]                  
                    p(c_11) = [1] x1 + [1]         
                    p(c_12) = [1] x1 + [3]         
                    p(c_13) = [1]                  
                    p(c_14) = [4] x1 + [2] x2 + [0]
                    p(c_15) = [1]                  
          
          Following rules are strictly oriented:
          reverse#(add(n,x)) = [1] x + [7]      
                             > [1] x + [6]      
                             = c_12(reverse#(x))
          
          
          Following rules are (at-least) weakly oriented:
                       concat#(cons(u,v),y) =  [0]                                  
                                            >= [5]                                  
                                            =  c_3(concat#(v,y))                    
          
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [8]  
                                            >= [0]                                  
                                            =  concat#(u,v)                         
          
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [8]  
                                            >= [0]                                  
                                            =  concat#(w,z)                         
          
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [8]  
                                            >= [1] u + [1] v + [1] w + [1] z + [0]  
                                            =  less_leaves#(concat(u,v),concat(w,z))
          
                          minus#(s(x),s(y)) =  [0]                                  
                                            >= [1]                                  
                                            =  c_9(minus#(x,y))                     
          
                           quot#(s(x),s(y)) =  [1] x + [0]                          
                                            >= [0]                                  
                                            =  minus#(x,y)                          
          
                           quot#(s(x),s(y)) =  [1] x + [0]                          
                                            >= [1] x + [0]                          
                                            =  quot#(minus(x,y),s(y))               
          
                         shuffle#(add(n,x)) =  [1] x + [4]                          
                                            >= [1] x + [3]                          
                                            =  reverse#(x)                          
          
                         shuffle#(add(n,x)) =  [1] x + [4]                          
                                            >= [1] x + [0]                          
                                            =  shuffle#(reverse(x))                 
          
                            app(add(n,x),y) =  [1] x + [1] y + [4]                  
                                            >= [1] x + [1] y + [4]                  
                                            =  add(n,app(x,y))                      
          
                               app(nil(),y) =  [1] y + [0]                          
                                            >= [1] y + [0]                          
                                            =  y                                    
          
                        concat(cons(u,v),y) =  [1] u + [1] v + [1] y + [4]          
                                            >= [1] u + [1] v + [1] y + [4]          
                                            =  cons(u,concat(v,y))                  
          
                           concat(leaf(),y) =  [1] y + [1]                          
                                            >= [1] y + [0]                          
                                            =  y                                    
          
                               minus(x,0()) =  [1] x + [0]                          
                                            >= [1] x + [0]                          
                                            =  x                                    
          
                           minus(s(x),s(y)) =  [1] x + [0]                          
                                            >= [1] x + [0]                          
                                            =  minus(x,y)                           
          
                          reverse(add(n,x)) =  [1] x + [4]                          
                                            >= [1] x + [4]                          
                                            =  app(reverse(x),add(n,nil()))         
          
                             reverse(nil()) =  [0]                                  
                                            >= [0]                                  
                                            =  nil()                                
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
**** Step 1.b:5.b:1.a:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            reverse#(add(n,x)) -> c_12(reverse#(x))
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(add) = {2},
            uargs(app) = {1},
            uargs(cons) = {2},
            uargs(less_leaves#) = {1,2},
            uargs(quot#) = {1},
            uargs(shuffle#) = {1},
            uargs(c_3) = {1},
            uargs(c_9) = {1},
            uargs(c_12) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                       p(0) = [0]                  
                     p(add) = [1] x2 + [0]         
                     p(app) = [1] x1 + [4] x2 + [0]
                  p(concat) = [1] x1 + [1] x2 + [0]
                    p(cons) = [1] x1 + [1] x2 + [0]
                   p(false) = [0]                  
                    p(leaf) = [0]                  
             p(less_leaves) = [0]                  
                   p(minus) = [1] x1 + [0]         
                     p(nil) = [0]                  
                    p(quot) = [0]                  
                 p(reverse) = [0]                  
                       p(s) = [1] x1 + [4]         
                 p(shuffle) = [0]                  
                    p(true) = [0]                  
                    p(app#) = [0]                  
                 p(concat#) = [1] x2 + [0]         
            p(less_leaves#) = [1] x1 + [1] x2 + [2]
                  p(minus#) = [1] x2 + [4]         
                   p(quot#) = [1] x1 + [1] x2 + [0]
                p(reverse#) = [0]                  
                p(shuffle#) = [1] x1 + [2]         
                     p(c_1) = [0]                  
                     p(c_2) = [0]                  
                     p(c_3) = [1] x1 + [0]         
                     p(c_4) = [0]                  
                     p(c_5) = [0]                  
                     p(c_6) = [0]                  
                     p(c_7) = [0]                  
                     p(c_8) = [0]                  
                     p(c_9) = [1] x1 + [0]         
                    p(c_10) = [0]                  
                    p(c_11) = [0]                  
                    p(c_12) = [1] x1 + [0]         
                    p(c_13) = [4]                  
                    p(c_14) = [0]                  
                    p(c_15) = [2]                  
          
          Following rules are strictly oriented:
          minus#(s(x),s(y)) = [1] y + [8]     
                            > [1] y + [4]     
                            = c_9(minus#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
                       concat#(cons(u,v),y) =  [1] y + [0]                          
                                            >= [1] y + [0]                          
                                            =  c_3(concat#(v,y))                    
          
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [2]  
                                            >= [1] v + [0]                          
                                            =  concat#(u,v)                         
          
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [2]  
                                            >= [1] z + [0]                          
                                            =  concat#(w,z)                         
          
          less_leaves#(cons(u,v),cons(w,z)) =  [1] u + [1] v + [1] w + [1] z + [2]  
                                            >= [1] u + [1] v + [1] w + [1] z + [2]  
                                            =  less_leaves#(concat(u,v),concat(w,z))
          
                           quot#(s(x),s(y)) =  [1] x + [1] y + [8]                  
                                            >= [1] y + [4]                          
                                            =  minus#(x,y)                          
          
                           quot#(s(x),s(y)) =  [1] x + [1] y + [8]                  
                                            >= [1] x + [1] y + [4]                  
                                            =  quot#(minus(x,y),s(y))               
          
                         reverse#(add(n,x)) =  [0]                                  
                                            >= [0]                                  
                                            =  c_12(reverse#(x))                    
          
                         shuffle#(add(n,x)) =  [1] x + [2]                          
                                            >= [0]                                  
                                            =  reverse#(x)                          
          
                         shuffle#(add(n,x)) =  [1] x + [2]                          
                                            >= [2]                                  
                                            =  shuffle#(reverse(x))                 
          
                            app(add(n,x),y) =  [1] x + [4] y + [0]                  
                                            >= [1] x + [4] y + [0]                  
                                            =  add(n,app(x,y))                      
          
                               app(nil(),y) =  [4] y + [0]                          
                                            >= [1] y + [0]                          
                                            =  y                                    
          
                        concat(cons(u,v),y) =  [1] u + [1] v + [1] y + [0]          
                                            >= [1] u + [1] v + [1] y + [0]          
                                            =  cons(u,concat(v,y))                  
          
                           concat(leaf(),y) =  [1] y + [0]                          
                                            >= [1] y + [0]                          
                                            =  y                                    
          
                               minus(x,0()) =  [1] x + [0]                          
                                            >= [1] x + [0]                          
                                            =  x                                    
          
                           minus(s(x),s(y)) =  [1] x + [4]                          
                                            >= [1] x + [0]                          
                                            =  minus(x,y)                           
          
                          reverse(add(n,x)) =  [0]                                  
                                            >= [0]                                  
                                            =  app(reverse(x),add(n,nil()))         
          
                             reverse(nil()) =  [0]                                  
                                            >= [0]                                  
                                            =  nil()                                
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
**** Step 1.b:5.b:1.a:4: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
        - Weak DPs:
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            reverse#(add(n,x)) -> c_12(reverse#(x))
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_3) = {1},
          uargs(c_9) = {1},
          uargs(c_12) = {1}
        
        Following symbols are considered usable:
          {concat,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}
        TcT has computed the following interpretation:
                     p(0) = [0]                  
                   p(add) = [1] x1 + [1] x2 + [0]
                   p(app) = [3] x1 + [0]         
                p(concat) = [1] x1 + [1] x2 + [0]
                  p(cons) = [1] x1 + [1] x2 + [1]
                 p(false) = [0]                  
                  p(leaf) = [6]                  
           p(less_leaves) = [0]                  
                 p(minus) = [0]                  
                   p(nil) = [4]                  
                  p(quot) = [0]                  
               p(reverse) = [5]                  
                     p(s) = [1] x1 + [0]         
               p(shuffle) = [0]                  
                  p(true) = [0]                  
                  p(app#) = [0]                  
               p(concat#) = [1] x1 + [0]         
          p(less_leaves#) = [6] x1 + [1] x2 + [4]
                p(minus#) = [0]                  
                 p(quot#) = [3]                  
              p(reverse#) = [0]                  
              p(shuffle#) = [0]                  
                   p(c_1) = [0]                  
                   p(c_2) = [0]                  
                   p(c_3) = [1] x1 + [0]         
                   p(c_4) = [0]                  
                   p(c_5) = [0]                  
                   p(c_6) = [4] x1 + [2] x2 + [0]
                   p(c_7) = [0]                  
                   p(c_8) = [0]                  
                   p(c_9) = [4] x1 + [0]         
                  p(c_10) = [0]                  
                  p(c_11) = [1] x1 + [0]         
                  p(c_12) = [1] x1 + [0]         
                  p(c_13) = [0]                  
                  p(c_14) = [2] x1 + [2] x2 + [0]
                  p(c_15) = [0]                  
        
        Following rules are strictly oriented:
        concat#(cons(u,v),y) = [1] u + [1] v + [1]
                             > [1] v + [0]        
                             = c_3(concat#(v,y))  
        
        
        Following rules are (at-least) weakly oriented:
        less_leaves#(cons(u,v),cons(w,z)) =  [6] u + [6] v + [1] w + [1] z + [11] 
                                          >= [1] u + [0]                          
                                          =  concat#(u,v)                         
        
        less_leaves#(cons(u,v),cons(w,z)) =  [6] u + [6] v + [1] w + [1] z + [11] 
                                          >= [1] w + [0]                          
                                          =  concat#(w,z)                         
        
        less_leaves#(cons(u,v),cons(w,z)) =  [6] u + [6] v + [1] w + [1] z + [11] 
                                          >= [6] u + [6] v + [1] w + [1] z + [4]  
                                          =  less_leaves#(concat(u,v),concat(w,z))
        
                        minus#(s(x),s(y)) =  [0]                                  
                                          >= [0]                                  
                                          =  c_9(minus#(x,y))                     
        
                         quot#(s(x),s(y)) =  [3]                                  
                                          >= [0]                                  
                                          =  minus#(x,y)                          
        
                         quot#(s(x),s(y)) =  [3]                                  
                                          >= [3]                                  
                                          =  quot#(minus(x,y),s(y))               
        
                       reverse#(add(n,x)) =  [0]                                  
                                          >= [0]                                  
                                          =  c_12(reverse#(x))                    
        
                       shuffle#(add(n,x)) =  [0]                                  
                                          >= [0]                                  
                                          =  reverse#(x)                          
        
                       shuffle#(add(n,x)) =  [0]                                  
                                          >= [0]                                  
                                          =  shuffle#(reverse(x))                 
        
                      concat(cons(u,v),y) =  [1] u + [1] v + [1] y + [1]          
                                          >= [1] u + [1] v + [1] y + [1]          
                                          =  cons(u,concat(v,y))                  
        
                         concat(leaf(),y) =  [1] y + [6]                          
                                          >= [1] y + [0]                          
                                          =  y                                    
        
**** Step 1.b:5.b:1.a:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            concat#(cons(u,v),y) -> c_3(concat#(v,y))
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            minus#(s(x),s(y)) -> c_9(minus#(x,y))
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            reverse#(add(n,x)) -> c_12(reverse#(x))
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/1,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:5.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
        - Weak DPs:
            concat#(cons(u,v),y) -> concat#(v,y)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
            less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
            less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
            minus#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> minus#(x,y)
            quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
            reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
            reverse#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:app#(add(n,x),y) -> c_1(app#(x,y))
             -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1
          
          2:W:concat#(cons(u,v),y) -> concat#(v,y)
             -->_1 concat#(cons(u,v),y) -> concat#(v,y):2
          
          3:W:less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
             -->_1 concat#(cons(u,v),y) -> concat#(v,y):2
          
          4:W:less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
             -->_1 concat#(cons(u,v),y) -> concat#(v,y):2
          
          5:W:less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z)):5
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z):4
             -->_1 less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v):3
          
          6:W:minus#(s(x),s(y)) -> minus#(x,y)
             -->_1 minus#(s(x),s(y)) -> minus#(x,y):6
          
          7:W:quot#(s(x),s(y)) -> minus#(x,y)
             -->_1 minus#(s(x),s(y)) -> minus#(x,y):6
          
          8:W:quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
             -->_1 quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)):8
             -->_1 quot#(s(x),s(y)) -> minus#(x,y):7
          
          9:W:reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
             -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1
          
          10:W:reverse#(add(n,x)) -> reverse#(x)
             -->_1 reverse#(add(n,x)) -> reverse#(x):10
             -->_1 reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())):9
          
          11:W:shuffle#(add(n,x)) -> reverse#(x)
             -->_1 reverse#(add(n,x)) -> reverse#(x):10
             -->_1 reverse#(add(n,x)) -> app#(reverse(x),add(n,nil())):9
          
          12:W:shuffle#(add(n,x)) -> shuffle#(reverse(x))
             -->_1 shuffle#(add(n,x)) -> shuffle#(reverse(x)):12
             -->_1 shuffle#(add(n,x)) -> reverse#(x):11
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
          7: quot#(s(x),s(y)) -> minus#(x,y)
          6: minus#(s(x),s(y)) -> minus#(x,y)
          5: less_leaves#(cons(u,v),cons(w,z)) -> less_leaves#(concat(u,v),concat(w,z))
          4: less_leaves#(cons(u,v),cons(w,z)) -> concat#(w,z)
          3: less_leaves#(cons(u,v),cons(w,z)) -> concat#(u,v)
          2: concat#(cons(u,v),y) -> concat#(v,y)
**** Step 1.b:5.b:1.b:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
        - Weak DPs:
            reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
            reverse#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            concat(cons(u,v),y) -> cons(u,concat(v,y))
            concat(leaf(),y) -> y
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          app(add(n,x),y) -> add(n,app(x,y))
          app(nil(),y) -> y
          reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
          reverse(nil()) -> nil()
          app#(add(n,x),y) -> c_1(app#(x,y))
          reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
          reverse#(add(n,x)) -> reverse#(x)
          shuffle#(add(n,x)) -> reverse#(x)
          shuffle#(add(n,x)) -> shuffle#(reverse(x))
**** Step 1.b:5.b:1.b:3: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
        - Weak DPs:
            reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
            reverse#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1}
        
        Following symbols are considered usable:
          {app,reverse,app#,concat#,less_leaves#,minus#,quot#,reverse#,shuffle#}
        TcT has computed the following interpretation:
                     p(0) = [0]                  
                   p(add) = [1] x1 + [1] x2 + [1]
                   p(app) = [1] x1 + [1] x2 + [0]
                p(concat) = [0]                  
                  p(cons) = [1] x1 + [0]         
                 p(false) = [0]                  
                  p(leaf) = [0]                  
           p(less_leaves) = [1] x2 + [0]         
                 p(minus) = [1] x1 + [0]         
                   p(nil) = [0]                  
                  p(quot) = [0]                  
               p(reverse) = [1] x1 + [0]         
                     p(s) = [0]                  
               p(shuffle) = [2] x1 + [1]         
                  p(true) = [0]                  
                  p(app#) = [8] x1 + [8] x2 + [0]
               p(concat#) = [8] x1 + [8] x2 + [0]
          p(less_leaves#) = [1] x1 + [1] x2 + [1]
                p(minus#) = [1] x2 + [8]         
                 p(quot#) = [1] x1 + [2]         
              p(reverse#) = [8] x1 + [0]         
              p(shuffle#) = [11] x1 + [9]        
                   p(c_1) = [1] x1 + [4]         
                   p(c_2) = [1]                  
                   p(c_3) = [0]                  
                   p(c_4) = [1]                  
                   p(c_5) = [0]                  
                   p(c_6) = [1] x3 + [8]         
                   p(c_7) = [1]                  
                   p(c_8) = [0]                  
                   p(c_9) = [1]                  
                  p(c_10) = [1]                  
                  p(c_11) = [2] x2 + [0]         
                  p(c_12) = [4] x1 + [0]         
                  p(c_13) = [2]                  
                  p(c_14) = [0]                  
                  p(c_15) = [1]                  
        
        Following rules are strictly oriented:
        app#(add(n,x),y) = [8] n + [8] x + [8] y + [8]
                         > [8] x + [8] y + [4]        
                         = c_1(app#(x,y))             
        
        
        Following rules are (at-least) weakly oriented:
        reverse#(add(n,x)) =  [8] n + [8] x + [8]          
                           >= [8] n + [8] x + [8]          
                           =  app#(reverse(x),add(n,nil()))
        
        reverse#(add(n,x)) =  [8] n + [8] x + [8]          
                           >= [8] x + [0]                  
                           =  reverse#(x)                  
        
        shuffle#(add(n,x)) =  [11] n + [11] x + [20]       
                           >= [8] x + [0]                  
                           =  reverse#(x)                  
        
        shuffle#(add(n,x)) =  [11] n + [11] x + [20]       
                           >= [11] x + [9]                 
                           =  shuffle#(reverse(x))         
        
           app(add(n,x),y) =  [1] n + [1] x + [1] y + [1]  
                           >= [1] n + [1] x + [1] y + [1]  
                           =  add(n,app(x,y))              
        
              app(nil(),y) =  [1] y + [0]                  
                           >= [1] y + [0]                  
                           =  y                            
        
         reverse(add(n,x)) =  [1] n + [1] x + [1]          
                           >= [1] n + [1] x + [1]          
                           =  app(reverse(x),add(n,nil())) 
        
            reverse(nil()) =  [0]                          
                           >= [0]                          
                           =  nil()                        
        
**** Step 1.b:5.b:1.b:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            app#(add(n,x),y) -> c_1(app#(x,y))
            reverse#(add(n,x)) -> app#(reverse(x),add(n,nil()))
            reverse#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> reverse#(x)
            shuffle#(add(n,x)) -> shuffle#(reverse(x))
        - Weak TRS:
            app(add(n,x),y) -> add(n,app(x,y))
            app(nil(),y) -> y
            reverse(add(n,x)) -> app(reverse(x),add(n,nil()))
            reverse(nil()) -> nil()
        - Signature:
            {app/2,concat/2,less_leaves/2,minus/2,quot/2,reverse/1,shuffle/1,app#/2,concat#/2,less_leaves#/2,minus#/2
            ,quot#/2,reverse#/1,shuffle#/1} / {0/0,add/2,cons/2,false/0,leaf/0,nil/0,s/1,true/0,c_1/1,c_2/0,c_3/1,c_4/0
            ,c_5/0,c_6/3,c_7/0,c_8/0,c_9/1,c_10/0,c_11/2,c_12/2,c_13/0,c_14/2,c_15/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {app#,concat#,less_leaves#,minus#,quot#,reverse#
            ,shuffle#} and constructors {0,add,cons,false,leaf,nil,s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^3))